Adaptive Gaussian Markov random fields with applications in human brain mapping

被引:32
|
作者
Brezger, A. [1 ]
Fahrmeir, L. [1 ]
Hennerfeind, A. [1 ]
机构
[1] Univ Munich, Inst Stat, D-80539 Munich, Germany
关键词
adaptive weights; human brain mapping; inhomogeneous Markov random fields; Markov chain Monte Carlo methods; space-varying coefficient models; spatiotemporal modelling;
D O I
10.1111/j.1467-9876.2007.00580.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Functional magnetic resonance imaging has become a standard technology in human brain mapping. Analyses of the massive spatiotemporal functional magnetic resonance imaging data sets often focus on parametric or non-parametric modelling of the temporal component, whereas spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high curvature transitions between activated and non-activated regions of the brain. To improve spatial adaptivity, we introduce a class of inhomogeneous Markov random fields with stochastic interaction weights in a space-varying coefficient model. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, can be carried out through efficient Markov chain Monte Carlo simulation. Although motivated by the analysis of functional magnetic resonance imaging data, the methodological development is general and can also be used for spatial smoothing and regression analysis of areal data on irregular lattices. An application to stylized artificial data and to real functional magnetic resonance imaging data from a visual stimulation experiment demonstrates the performance of our approach in comparison with Gaussian and robustified non-Gaussian Markov random-field models.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 50 条
  • [21] Another look at conditionally Gaussian Markov random fields
    Lavine, M
    BAYESIAN STATISTICS 6, 1999, : 371 - 387
  • [22] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    Advances in Data Analysis and Classification, 2008, 2 (1)
  • [23] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [24] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [25] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667
  • [26] Unified Terrain Mapping Model With Markov Random Fields
    Tse, Rina
    Ahmed, Nisar R.
    Campbell, Mark
    IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (02) : 290 - 306
  • [27] Spatial Sensor Selection via Gaussian Markov Random Fields
    Nguyen, Linh V.
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1226 - 1239
  • [28] Maximum likelihood estimation of noisy Gaussian Markov random fields
    Coli, M
    Ippoliti, L
    ITI 2002: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2002, : 85 - 90
  • [29] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Hiremath, Santosh
    Tolpekin, Valentyn A.
    van der Heijden, Gerie
    Stein, Alfred
    MACHINE VISION AND APPLICATIONS, 2013, 24 (04) : 845 - 854
  • [30] Sampling Strategies for Fast Updating of Gaussian Markov Random Fields
    Brown, D. Andrew
    McMahan, Christopher S.
    Self, Stella Watson
    AMERICAN STATISTICIAN, 2021, 75 (01): : 52 - 65