Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields

被引:4
|
作者
Fontanella, L. [1 ]
Ippoliti, L. [1 ]
Martin, R. J.
Trivisonno, S. [1 ]
机构
[1] Univ G DAnnunzio, Dept Quantitat Methods & Econ Theory, I-65127 Pescara, Italy
关键词
Gaussian Markov random fields; Geostatistics; Interpolation; Inverse correlations; Kriging; Spatio-temporal processes; MAXIMUM-LIKELIHOOD; LATTICE PROCESSES; MODELS;
D O I
10.1007/s11634-008-0019-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers interpolation on a lattice of covariance-based Gaussian Random Field models (Geostatistics models) using Gaussian Markov Random Fields (GMRFs) (conditional autoregression models). Two methods for estimating the GMRF parameters are considered. One generalises maximum likelihood for complete data, and the other ensures a better correspondence between fitted and theoretical correlations for higher lags. The methods can be used both for spatial and spatio-temporal data. Some different cross-validation methods for model choice are compared. The predictive ability of the GMRF is demonstrated by a simulation study, and an example using a real image is considered.
引用
收藏
页码:63 / 79
页数:17
相关论文
共 50 条
  • [1] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [2] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)
  • [3] High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields
    Emma S. Simpson
    Thomas Opitz
    Jennifer L. Wadsworth
    [J]. Extremes, 2023, 26 : 669 - 713
  • [4] High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields
    Simpson, Emma S.
    Opitz, Thomas
    Wadsworth, Jennifer L.
    [J]. EXTREMES, 2023, 26 (04) : 669 - 713
  • [5] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [6] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [7] Non-separable spatio-temporal models via transformed multivariate Gaussian Markov random fields
    Prates, Marcos O.
    Azevedo, Douglas R. M.
    MacNab, Ying C.
    Willig, Michael R.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (05) : 1116 - 1136
  • [8] Spatio-temporal fMRI analysis using Markov random fields
    Descombes, X
    Kruggel, F
    von Cramon, DY
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (06) : 1028 - 1039
  • [9] Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
    Western, Luke M.
    Sha, Zhe
    Rigby, Matt
    Ganesan, Anita L.
    Manning, Alistair J.
    Stanley, Kieran M.
    O'Doherty, Simon J.
    Young, Dickon
    Rougier, Jonathan
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (04) : 2095 - 2107
  • [10] Variation in use of Caesarean section in Norway: An application of spatio-temporal Gaussian random fields
    Mannseth, Janne
    Berentsen, Geir D.
    Skaug, Hans J.
    Lie, Rolv T.
    Moster, Dag
    [J]. SCANDINAVIAN JOURNAL OF PUBLIC HEALTH, 2021, 49 (08) : 891 - 898