Spatio-temporal fMRI analysis using Markov random fields

被引:89
|
作者
Descombes, X [1 ]
Kruggel, F [1 ]
von Cramon, DY [1 ]
机构
[1] Max Planck Inst Cognit Neurosci, D-04103 Leipzig, Germany
关键词
Bayesian framework; functional magnetic resonance imaging (fMRI) analysis; Markov random fields (MRF's); signal analysis; signal restoration;
D O I
10.1109/42.746636
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Functional magnetic resonance images (fMRI's) provide high-resolution datasets which allow researchers to obtain accurate delineation and sensitive detection of activation areas involved in cognitive processes. To preserve the resolution of this noninvasive technique, refined methods are required in the analysis of the data. In this paper, we first discuss the widely used methods based on a statistical parameter map (SPM) analysis exposing the different shortcomings of this approach when considering high-resolution data, First, the often used Gaussian filtering results in a blurring effect and in delocalization of the activated area. Secondly, the SPM approach only considers false alarms due to noise but not rejections of activated voxels. We propose to embed the fMRI analysis problem into a Bayesian framework consisting of two steps: i) data restoration and ii) data analysis, We, therefore, propose two Markov random fields (MRF's) to solve these two problems. Results on three protocols (visual, motor and word recognition) are shown for two SPM-approaches and compared with the proposed MRF-approach.
引用
收藏
页码:1028 / 1039
页数:12
相关论文
共 50 条
  • [1] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [2] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)
  • [3] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [4] fMRI signal restoration using a spatio-temporal Markov random field preserving transitions
    Descombes, X
    Kruggel, F
    von Cramon, DY
    [J]. NEUROIMAGE, 1998, 8 (04) : 340 - 349
  • [5] Video Object Tracking in the Compressed Domain Using Spatio-Temporal Markov Random Fields
    Khatoonabadi, Sayed Hossein
    Bajic, Ivan V.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 300 - 313
  • [6] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [7] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512
  • [8] A Markov random field spatio-temporal analysis of ocean temperature
    Lavine, M
    Lozier, S
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1999, 6 (03) : 249 - 273
  • [9] A Markov random field spatio-temporal analysis of ocean temperature
    Michael Lavine
    Susan Lozier
    [J]. Environmental and Ecological Statistics, 1999, 6 : 249 - 273
  • [10] ASYMPTOTICALLY EFFICIENT PARAMETER ESTIMATION IN HIDDEN MARKOV SPATIO-TEMPORAL RANDOM FIELDS
    Lai, Tze Leung
    Lim, Johan
    [J]. STATISTICA SINICA, 2015, 25 (01) : 403 - 421