ASYMPTOTICALLY EFFICIENT PARAMETER ESTIMATION IN HIDDEN MARKOV SPATIO-TEMPORAL RANDOM FIELDS

被引:2
|
作者
Lai, Tze Leung [1 ]
Lim, Johan [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Block maximum likelihood estimator; composite likelihood; correlation decay; hidden Markov random fields; image analysis; locally asymptotically normal family; rho-mixing; LIKELIHOOD; ENERGY; MODEL;
D O I
10.5705/ss.2013.281w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the parameters of Markov random field models for spatial and temporal data arises in many applications. There are computational and statistical challenges in developing efficient estimators because of the complexity of the joint distribution of the spatio-temporal models, especially when they involve hidden states that also need to be estimated from the observations. We develop composite likelihood estimators that are analytically and computationally tractable, and show that they are asymptotically efficient under some mild correlation decay assumptions.
引用
收藏
页码:403 / 421
页数:19
相关论文
共 50 条
  • [1] Spatio-temporal fMRI analysis using Markov random fields
    Descombes, X
    Kruggel, F
    von Cramon, DY
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (06) : 1028 - 1039
  • [2] Spatio-temporal random fields: compressible representation and distributed estimation
    Piatkowski, Nico
    Lee, Sangkyun
    Morik, Katharina
    [J]. MACHINE LEARNING, 2013, 93 (01) : 115 - 139
  • [3] Spatio-temporal random fields: compressible representation and distributed estimation
    Nico Piatkowski
    Sangkyun Lee
    Katharina Morik
    [J]. Machine Learning, 2013, 93 : 115 - 139
  • [4] Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
    Chandra, Siddhartha
    Couprie, Camille
    Kokkinos, Iasonas
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8915 - 8924
  • [5] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [6] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [7] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)
  • [8] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [9] Parameter estimation in hidden fuzzy Markov random fields and image segmentation
    Salzenstein, F
    Pieczynski, W
    [J]. GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (04): : 205 - 220
  • [10] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512