Non-separable spatio-temporal models via transformed multivariate Gaussian Markov random fields

被引:3
|
作者
Prates, Marcos O. [1 ]
Azevedo, Douglas R. M. [2 ]
MacNab, Ying C. [3 ]
Willig, Michael R. [4 ,5 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, MG, Brazil
[2] Appsilon, Warsaw, Poland
[3] Univ British Columbia, Sch Populat & Publ Hlth, Vancouver, BC, Canada
[4] Univ Connecticut, Dept Ecol & Evolutionary Biol, Ctr Environm Sci & Engn, Storrs, CT USA
[5] Univ Connecticut, Inst Environm, Storrs, CT USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Bayesian method; generalized linear mixed model; MCMC; spatial; confounding; TGMRF; TMGMRF; LUQUILLO-EXPERIMENTAL-FOREST; GASTROPOD POPULATIONS; DISTURBANCE; HURRICANE; SNAILS; SCALE; RESPONSES;
D O I
10.1111/rssc.12567
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Models that capture spatial and temporal dynamics are applicable in many scientific fields. Non-separable spatio-temporal models were introduced in the literature to capture these dynamics. However, these models are generally complicated in construction and interpretation. We introduce a class of non-separable transformed multivariate Gaussian Markov random fields (TMGMRF) in which the dependence structure is flexible and facilitates simple interpretations concerning spatial, temporal and spatio-temporal parameters. Moreover, TMGMRF models have the advantage of allowing specialists to define any desired marginal distribution in model construction without suffering from spatio-temporal confounding. Consequently, the use of spatio-temporal models under the TMGMRF framework leads to a new class of general models, such as spatio-temporal Gamma random fields, that can be directly used to model Poisson intensity for space-time data. The proposed model was applied to identify important environmental characteristics that affect variation in the abundance of Nenia tridens, a dominant species of gastropod in a well-studied tropical ecosystem, and to characterize its spatial and temporal trends, which are particularly critical during the Anthropocene, an epoch of time characterized by human-induced environmental change associated with climate and land use.
引用
收藏
页码:1116 / 1136
页数:21
相关论文
共 50 条
  • [1] A New Non-Separable Kernel for Spatio-Temporal Gaussian Process Regression
    Gallagher, Sean
    Quinn, Anthony
    [J]. 2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [2] Spatio-temporal circular models with non-separable covariance structure
    Mastrantonio, Gianluca
    Lasinio, Giovanna Jona
    Gelfand, Alan E.
    [J]. TEST, 2016, 25 (02) : 331 - 350
  • [3] Non-separable Spatio-temporal Graph Kernels via SPDEs
    Nikitin, Alexander
    John, S. T.
    Solin, Arno
    Kaski, Samuel
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [4] Spatio-temporal circular models with non-separable covariance structure
    Gianluca Mastrantonio
    Giovanna Jona Lasinio
    Alan E. Gelfand
    [J]. TEST, 2016, 25 : 331 - 350
  • [5] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [6] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)
  • [7] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [8] Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution
    Lorenzi, Marco
    Ziegler, Gabriel
    Alexander, Daniel C.
    Ourselin, Sebastien
    [J]. MACHINE LEARNING MEETS MEDICAL IMAGING, 2015, 9487 : 35 - 44
  • [9] Non-separable spatio-temporal Poisson point process models for fire occurrences
    Nicoletta D’Angelo
    Alessandro Albano
    Andrea Gilardi
    Giada Adelfio
    [J]. Environmental and Ecological Statistics, 2025, 32 (1) : 347 - 381
  • [10] Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet
    Huang, Jing
    You, Xinge
    Yuan, Yuan
    Yang, Feng
    Lin, Lin
    [J]. NEUROCOMPUTING, 2010, 73 (4-6) : 883 - 894