Non-separable spatio-temporal models via transformed multivariate Gaussian Markov random fields

被引:3
|
作者
Prates, Marcos O. [1 ]
Azevedo, Douglas R. M. [2 ]
MacNab, Ying C. [3 ]
Willig, Michael R. [4 ,5 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, MG, Brazil
[2] Appsilon, Warsaw, Poland
[3] Univ British Columbia, Sch Populat & Publ Hlth, Vancouver, BC, Canada
[4] Univ Connecticut, Dept Ecol & Evolutionary Biol, Ctr Environm Sci & Engn, Storrs, CT USA
[5] Univ Connecticut, Inst Environm, Storrs, CT USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Bayesian method; generalized linear mixed model; MCMC; spatial; confounding; TGMRF; TMGMRF; LUQUILLO-EXPERIMENTAL-FOREST; GASTROPOD POPULATIONS; DISTURBANCE; HURRICANE; SNAILS; SCALE; RESPONSES;
D O I
10.1111/rssc.12567
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Models that capture spatial and temporal dynamics are applicable in many scientific fields. Non-separable spatio-temporal models were introduced in the literature to capture these dynamics. However, these models are generally complicated in construction and interpretation. We introduce a class of non-separable transformed multivariate Gaussian Markov random fields (TMGMRF) in which the dependence structure is flexible and facilitates simple interpretations concerning spatial, temporal and spatio-temporal parameters. Moreover, TMGMRF models have the advantage of allowing specialists to define any desired marginal distribution in model construction without suffering from spatio-temporal confounding. Consequently, the use of spatio-temporal models under the TMGMRF framework leads to a new class of general models, such as spatio-temporal Gamma random fields, that can be directly used to model Poisson intensity for space-time data. The proposed model was applied to identify important environmental characteristics that affect variation in the abundance of Nenia tridens, a dominant species of gastropod in a well-studied tropical ecosystem, and to characterize its spatial and temporal trends, which are particularly critical during the Anthropocene, an epoch of time characterized by human-induced environmental change associated with climate and land use.
引用
收藏
页码:1116 / 1136
页数:21
相关论文
共 50 条
  • [21] Classification of Gaussian spatio-temporal data with stationary separable covariances
    Karaliute, Marta
    Ducinskas, Kestutis
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 363 - 374
  • [22] Video Object Tracking in the Compressed Domain Using Spatio-Temporal Markov Random Fields
    Khatoonabadi, Sayed Hossein
    Bajic, Ivan V.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 300 - 313
  • [23] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [24] SPATIO-TEMPORAL VISUAL RECEPTIVE-FIELDS AS REVEALED BY SPATIO-TEMPORAL RANDOM NOISE
    HIDA, E
    NAKA, K
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1982, 37 (10): : 1048 - 1049
  • [25] Spatio-temporal Markov random field for video denoising
    Chen, Jia
    Tang, Chi-Keung
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2232 - +
  • [26] Variation in use of Caesarean section in Norway: An application of spatio-temporal Gaussian random fields
    Mannseth, Janne
    Berentsen, Geir D.
    Skaug, Hans J.
    Lie, Rolv T.
    Moster, Dag
    [J]. SCANDINAVIAN JOURNAL OF PUBLIC HEALTH, 2021, 49 (08) : 891 - 898
  • [27] Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
    Western, Luke M.
    Sha, Zhe
    Rigby, Matt
    Ganesan, Anita L.
    Manning, Alistair J.
    Stanley, Kieran M.
    O'Doherty, Simon J.
    Young, Dickon
    Rougier, Jonathan
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (04) : 2095 - 2107
  • [28] Wind power scenario generation with non-separable spatio-temporal covariance function and fluctuation-based clustering
    Tan, Jin
    Wu, Qiuwei
    Zhang, Menglin
    Wei, Wei
    Hatziargyriou, Nikos
    Liu, Feng
    Konstantinou, Theodoros
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [29] A class of valid Matern cross-covariance functions for multivariate spatio-temporal random fields
    Ip, Ryan H. L.
    Li, W. K.
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 130 : 115 - 119
  • [30] Bayesian estimation of multivariate Gaussian Markov random fields with constraint
    MacNab, Ying C.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (30) : 4767 - 4788