Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields

被引:4
|
作者
Fontanella, L. [1 ]
Ippoliti, L. [1 ]
Martin, R. J.
Trivisonno, S. [1 ]
机构
[1] Univ G DAnnunzio, Dept Quantitat Methods & Econ Theory, I-65127 Pescara, Italy
关键词
Gaussian Markov random fields; Geostatistics; Interpolation; Inverse correlations; Kriging; Spatio-temporal processes; MAXIMUM-LIKELIHOOD; LATTICE PROCESSES; MODELS;
D O I
10.1007/s11634-008-0019-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers interpolation on a lattice of covariance-based Gaussian Random Field models (Geostatistics models) using Gaussian Markov Random Fields (GMRFs) (conditional autoregression models). Two methods for estimating the GMRF parameters are considered. One generalises maximum likelihood for complete data, and the other ensures a better correspondence between fitted and theoretical correlations for higher lags. The methods can be used both for spatial and spatio-temporal data. Some different cross-validation methods for model choice are compared. The predictive ability of the GMRF is demonstrated by a simulation study, and an example using a real image is considered.
引用
收藏
页码:63 / 79
页数:17
相关论文
共 50 条
  • [41] Gaussian Markov Random Fields for Fusion in Information Form
    Sun, Liye
    Vidal-Calleja, Teresa
    Miro, Jaime Valls
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1840 - 1845
  • [42] Modeling material stress using integrated Gaussian Markov random fields
    Marcy, Peter W.
    Vander Wiel, Scott A.
    Storlie, Curtis B.
    Livescu, Veronica
    Bronkhorst, Curt A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (09) : 1616 - 1636
  • [43] Gaussian Markov Random Fields and totally positive matrices
    Baz, Juan
    Alonso, Pedro
    Pena, Juan Manuel
    Perez-Fernandez, Raul
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 430
  • [44] FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV RANDOM FIELDS
    Do, Huan N.
    Jadaliha, Mahdi
    Temel, Mehmet
    Choi, Jongeun
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1175 - 1188
  • [45] ON THE MARKOV PROPERTY FOR CERTAIN GAUSSIAN RANDOM-FIELDS
    KOLSRUD, T
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (03) : 393 - 402
  • [46] Multiscale Gaussian Markov Random Fields for Writer Identificatio
    Ning, Liangshuo
    Zhou, Long
    You, Xinge
    Du, Liang
    He, Zhengyu
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 170 - 175
  • [47] On Gaussian Markov random fields and Bayesian disease mapping
    MacNab, Ying C.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (01) : 49 - 68
  • [48] Region selection in Markov random fields: Gaussian case
    Soloveychik, Ilya
    Tarokh, Vahid
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [49] DISCRETE OPTIMIZATION VIA SIMULATION USING GAUSSIAN MARKOV RANDOM FIELDS
    Salemi, Peter
    Nelson, Barry L.
    Staum, Jeremy
    [J]. PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 3809 - 3820
  • [50] Another look at conditionally Gaussian Markov random fields
    Lavine, M
    [J]. BAYESIAN STATISTICS 6, 1999, : 371 - 387