Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields

被引:3
|
作者
Wu, H. [1 ]
Noe, F. [1 ]
机构
[1] Free Univ Berlin, D-14195 Berlin, Germany
关键词
Markov chain; Gaussian Markov random field; maximum a posteriori; cross validation; TRANSITION-PROBABILITIES; LIKELIHOOD;
D O I
10.1016/j.procs.2010.04.186
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a Gaussian Markov random field (GMRF) model for the transition matrices (TMs) of Markov chains (MCs) by assuming the existence of a neighborhood relationship between states, and develop the maximum a posteriori (MAP) estimators under different observation conditions. Unlike earlier work on TM estimation, our method can make full use of the similarity between different states to improve the estimated accuracy, and the estimator can be performed very efficiently by solving a convex programming problem. In addition, we discuss the parameter choice of the proposed model, and introduce a Monte Carlo cross validation (MCCV) method. The numerical simulations of a diffusion process are employed to show the effectiveness of the proposed models and algorithms. (C) 2010 Published by Elsevier Ltd.
引用
收藏
页码:1659 / 1667
页数:9
相关论文
共 50 条
  • [1] Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains
    Gauvain, Jean-Luc
    Lee, Chin-Hui
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1994, 2 (02): : 291 - 298
  • [2] Maximum likelihood estimation of noisy Gaussian Markov random fields
    Coli, M
    Ippoliti, L
    [J]. ITI 2002: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2002, : 85 - 90
  • [3] Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields
    Victor De Oliveira
    Marco A. R. Ferreira
    [J]. Metrika, 2011, 74 : 167 - 183
  • [4] Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields
    De Oliveira, Victor
    Ferreira, Marco A. R.
    [J]. METRIKA, 2011, 74 (02) : 167 - 183
  • [5] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [6] ONE-DIMENSIONAL MARKOV RANDOM FIELDS, MARKOV CHAINS AND TOPOLOGICAL MARKOV FIELDS
    Chandgotia, Nishant
    Han, Guangyue
    Marcus, Brian
    Meyerovitch, Tom
    Pavlov, Ronnie
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (01) : 227 - 242
  • [7] Adjusted maximum likelihood and pseudo-likelihood estimation for noisy Gaussian Markov random fields
    Dryden, I
    Ippoliti, L
    Romagnoli, L
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (02) : 370 - 388
  • [8] Adaptive Gaussian Markov random fields for child mortality estimation
    Aleshin-Guendel, Serge
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2024,
  • [9] Bayesian estimation of multivariate Gaussian Markov random fields with constraint
    MacNab, Ying C.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (30) : 4767 - 4788
  • [10] LEARNING IN GAUSSIAN MARKOV RANDOM FIELDS
    Riedl, Thomas J.
    Singer, Andrew C.
    Choi, Jun Won
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3070 - 3073