Adjusted maximum likelihood and pseudo-likelihood estimation for noisy Gaussian Markov random fields

被引:21
|
作者
Dryden, I [1 ]
Ippoliti, L
Romagnoli, L
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Univ G DAnnunzio, Dept Quantitat Methods & Econ Theory, I-65127 Pescara, Italy
[3] Ist Nazl Stat, Ufficio Reg Molise, I-86100 Campobasso, Italy
关键词
Cholesky decomposition; image analysis; texture;
D O I
10.1198/106186002760180563
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article is concerned with parameter estimation for Gaussian Markov random fields observed with additive independent identically distributed noise. In particular, we consider maximum likelihood and maximum pseudo-likelihood estimation for the noise-free case and make adjustments to the estimators in the presence of noise. The adjusted maximum likelihood estimator is computed in O(n(2)) time for a square image with n pixels. The estimation method is useful when only the moments of the noise are specified or when the exact maximum likelihood estimator is difficult to compute (e.g., for certain non-Gaussian noise distributions). The adjusted maximum pseudo-likelihood estimator is straightforward to calculate, is useful as a starting value in maximization routines. and is often a reasonable estimator in its own right. We discuss asymptotic properties of the adjusted estimators including consistency. We also consider constrained maximum pseudo-likelihood estimation and a Bayesian estimator. We compare the adjusted estimators with the exact Gaussian maximum likelihood estimator and toroidal boundary approximation Gaussian maximum likelihood estimator in a simulation study. The adjusted estimators are also robust to the specification of the noise distribution.
引用
收藏
页码:370 / 388
页数:19
相关论文
共 50 条
  • [1] Maximum likelihood estimation of noisy Gaussian Markov random fields
    Coli, M
    Ippoliti, L
    [J]. ITI 2002: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2002, : 85 - 90
  • [2] A GENERALIZED MAXIMUM PSEUDO-LIKELIHOOD ESTIMATOR FOR NOISY MARKOV FIELDS
    Barsky, David J.
    Gandolfi, Alberto
    [J]. ANNALS OF APPLIED PROBABILITY, 1995, 5 (04): : 1095 - 1125
  • [3] Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields
    Victor De Oliveira
    Marco A. R. Ferreira
    [J]. Metrika, 2011, 74 : 167 - 183
  • [4] Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields
    De Oliveira, Victor
    Ferreira, Marco A. R.
    [J]. METRIKA, 2011, 74 (02) : 167 - 183
  • [5] EFFICIENCY OF PSEUDO-LIKELIHOOD ESTIMATION FOR SIMPLE GAUSSIAN FIELDS
    BESAG, J
    [J]. BIOMETRIKA, 1977, 64 (03) : 616 - 618
  • [6] Scalable Pseudo-Likelihood Estimation in Hybrid Random Fields
    Freno, Antonino
    Trentin, Edmondo
    Gori, Marco
    [J]. KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 319 - 327
  • [7] Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice
    Fuchun Huang
    Yosihiko Ogata
    [J]. Annals of the Institute of Statistical Mathematics, 2002, 54 : 1 - 18
  • [8] Generalized pseudo-likelihood estimates for Markov random fields on lattice
    Huang, F
    Ogata, Y
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (01) : 1 - 18
  • [9] A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models
    van Duijn, Marijtje A. J.
    Gile, Krista J.
    Handcock, Mark S.
    [J]. SOCIAL NETWORKS, 2009, 31 (01) : 52 - 62
  • [10] Pseudo-likelihood estimation for a class of spatial Markov chains
    Craig, PS
    Seheult, AH
    [J]. STATISTICS AND COMPUTING, 1996, 6 (03) : 303 - 311