Schrodinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces

被引:0
|
作者
Shen, Tianjun [1 ]
Li, Bo [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Morrey space; Dirichlet problem; metric measure space; POISSON INTEGRALS; CARLESON MEASURES; HEAT KERNELS; RIESZ TRANSFORMS; UPPER-BOUNDS; OPERATORS; BMO; EQUATIONS;
D O I
10.3390/math10071112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that (X,d,mu) is a metric measure space that satisfies a Q-doubling condition with Q > 1 and supports an L-2-Poincare inequality. Let L be a nonnegative operator generalized by a Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Holder class RHq(X) for some q >= (Q + 1)/2. In this paper, we consider the Dirichlet problem for the Schrodinger equation -partial derivative(2)(t)u + Lu + Vu = 0 on the upper half-space X x R+, which has f as its the boundary value on X. We show that a solution u of the Schrodinger equation satisfies the Carleson type condition if and only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of f. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from the Euclidean space R-Q to the metric measure space X and improves the reverse Holder index from q >= Q to q >= (Q + 1)/2.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Yi Liu
    Wen Yuan
    Czechoslovak Mathematical Journal, 2017, 67 : 715 - 732
  • [42] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Liu, Yi
    Yuan, Wen
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 715 - 732
  • [43] Extensions and traces of functions of bounded variation on metric spaces
    Lahti, Panu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 521 - 537
  • [44] Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces
    Sihwaningrum, Idha
    Gunawan, Hendra
    Nakai, Eiichi
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1400 - 1417
  • [45] Fractional Hajlasz-Morrey-Sobolev spaces on quasi-metric measure spaces
    Yuan, Wen
    Lu, Yufeng
    Yang, Dachun
    STUDIA MATHEMATICA, 2015, 226 (02) : 95 - 122
  • [46] Boundedness of Lusin-area and gλ* functions on localized Morrey-Campanato spaces over doubling metric measure spaces
    Lin, Haibo
    Nakai, Eiichi
    Yang, Dachun
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (03): : 245 - 282
  • [47] Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces
    Ilkka Holopainen
    Urs Lang
    Aleksi Vähäkangas
    Mathematische Annalen, 2007, 339 : 101 - 134
  • [48] Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry
    Butaev, Almaz
    Luo, Liangbing
    Shanmugalingam, Nageswari
    POTENTIAL ANALYSIS, 2025, 62 (03) : 485 - 508
  • [49] Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces
    Holopainen, Ilkka
    Lang, Urs
    Vahakangas, Aleksi
    MATHEMATISCHE ANNALEN, 2007, 339 (01) : 101 - 134
  • [50] THE OBSTACLE AND DIRICHLET PROBLEMS ASSOCIATED WITH p-HARMONIC FUNCTIONS IN UNBOUNDED SETS IN Rn AND METRIC SPACES
    Hansevi, Daniel
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 89 - 108