Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces

被引:12
|
作者
Sihwaningrum, Idha [1 ]
Gunawan, Hendra [2 ]
Nakai, Eiichi [3 ]
机构
[1] Jenderal Soedirman Univ, Fac Math & Nat Sci, Purwokerto 53122, Indonesia
[2] Bandung Inst Technol, Fac Math & Nat Sci, Bandung 40132, Indonesia
[3] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
基金
日本学术振兴会;
关键词
fractional integral operator; maximal operator; Morrey spaces; strong and weak boundedness; DOUBLING CONDITION; WEAK;
D O I
10.1002/mana.201600350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the boundedness and weak boundedness of the maximal operator and generalized fractional integral operators on generalized Money spaces over metric measure spaces (X, d, mu) without the assumption of the growth condition on mu. The results are generalization and improvement of some known results. We also give the vector-valued boundedness. Moreover we prove the independence of the choice of the parameter in the definition of generalized Morrey spaces by using the geometrically doubling condition in the sense of Hytonen.
引用
收藏
页码:1400 / 1417
页数:18
相关论文
共 50 条