Schrodinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces

被引:0
|
作者
Shen, Tianjun [1 ]
Li, Bo [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Morrey space; Dirichlet problem; metric measure space; POISSON INTEGRALS; CARLESON MEASURES; HEAT KERNELS; RIESZ TRANSFORMS; UPPER-BOUNDS; OPERATORS; BMO; EQUATIONS;
D O I
10.3390/math10071112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that (X,d,mu) is a metric measure space that satisfies a Q-doubling condition with Q > 1 and supports an L-2-Poincare inequality. Let L be a nonnegative operator generalized by a Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Holder class RHq(X) for some q >= (Q + 1)/2. In this paper, we consider the Dirichlet problem for the Schrodinger equation -partial derivative(2)(t)u + Lu + Vu = 0 on the upper half-space X x R+, which has f as its the boundary value on X. We show that a solution u of the Schrodinger equation satisfies the Carleson type condition if and only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of f. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from the Euclidean space R-Q to the metric measure space X and improves the reverse Holder index from q >= Q to q >= (Q + 1)/2.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Harmonic functions with BMO traces and their limiting behaviors on metric measure spaces
    Yutong Jin
    Bo Li
    Tianjun Shen
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [2] Harmonic functions with BMO traces and their limiting behaviors on metric measure spaces
    Jin, Yutong
    Li, Bo
    Shen, Tianjun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [3] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [4] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [5] LOCALIZED MORREY-CAMPANATO SPACES ON METRIC MEASURE SPACES AND APPLICATIONS TO SCHRODINGER OPERATORS
    Yang, Dachun
    Yang, Dongyong
    Zhou, Yuan
    NAGOYA MATHEMATICAL JOURNAL, 2010, 198 : 77 - 119
  • [6] ROUGH TRACES OF BV FUNCTIONS IN METRIC MEASURE SPACES
    Buffa, Vito
    Miranda Jr, Michele
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 309 - 333
  • [7] Interpolation of Morrey Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 598 - 608
  • [8] Morrey Spaces for Nonhomogeneous Metric Measure Spaces
    Cao Yonghui
    Zhou Jiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [9] The Dirichlet problem for p-harmonic functions on metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 556 : 173 - 203
  • [10] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Michał Gaczkowski
    Przemysław Górka
    Potential Analysis, 2009, 31 : 203 - 214