Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces

被引:7
|
作者
Liu, Yi [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, 19 Xinjiekouwai St, Beijing 100875, Haidian, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderon product; predual space; +/- interpolation method; LEBESGUE SPACES; PARABOLIC EQUATIONS; RIESZ-POTENTIALS; SOBOLEV SPACES; INTEGRABILITY; REGULARITY; OPERATOR; THEOREM;
D O I
10.21136/CMJ.2017.0081-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let theta a (0, 1), lambda a [0, 1) and p, p (0), p (1) a (1,a] be such that (1 - theta)/p (0) + theta/p (1) = 1/p, and let phi, phi(0), phi(1) be some admissible functions such that phi, phi(0) (p/p0) and phi(1) (p/p1) are equivalent. We first prove that, via the +/- interpolation method, the interpolation L (phi 0) (p0),lambda) (X), L (phi 1) (p1), lambda) (X), theta > of two generalized grand Morrey spaces on a quasi-metric measure space X is the generalized grand Morrey space L (phi) (p),lambda) (X). Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
引用
收藏
页码:715 / 732
页数:18
相关论文
共 50 条
  • [1] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Yi Liu
    Wen Yuan
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 715 - 732
  • [2] Interpolation on variable Morrey spaces defined on quasi-metric measure spaces
    Meskhi, Alexander
    Rafeiro, Humberto
    Zaighum, Muhammad Asad
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (10) : 3946 - 3961
  • [3] GRAND LEBESGUE SPACES ON QUASI-METRIC MEASURE SPACES OF INFINITE MEASURE
    Guliyev V.
    Samko S.
    Umarkhadzhiev S.
    [J]. Journal of Mathematical Sciences, 2023, 271 (4) : 568 - 582
  • [4] Weighted Fractional Hardy Operators and their Commutators on Generalized Morrey Spaces over Quasi-Metric Measure Spaces
    Samko Natasha
    [J]. Fractional Calculus and Applied Analysis, 2021, 24 : 1643 - 1669
  • [5] WEIGHTED FRACTIONAL HARDY OPERATORS AND THEIR COMMUTATORS ON GENERALIZED MORREY SPACES OVER QUASI-METRIC MEASURE SPACES
    Samko, Natasha
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (06) : 1643 - 1669
  • [6] Fractional Hajlasz-Morrey-Sobolev spaces on quasi-metric measure spaces
    Yuan, Wen
    Lu, Yufeng
    Yang, Dachun
    [J]. STUDIA MATHEMATICA, 2015, 226 (02) : 95 - 122
  • [7] Maximal Operator in Variable Exponent Generalized Morrey Spaces on Quasi-metric Measure Space
    Vagif S. Guliyev
    Stefan G. Samko
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 1151 - 1165
  • [8] Maximal Operator in Variable Exponent Generalized Morrey Spaces on Quasi-metric Measure Space
    Guliyev, Vagif S.
    Samko, Stefan G.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 1151 - 1165
  • [9] Interpolation of Morrey Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 598 - 608
  • [10] Quasi-metric spaces with measure
    Stojmirovic, Aleksandar
    [J]. Topology Proceedings, Vol 28, No 2, 2004, 2004, 28 (02): : 655 - 671