Skew polynomial rings over σ-quasi-Baer and σ-principally quasi-Baer rings

被引:0
|
作者
Han, J [1 ]
机构
[1] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
关键词
sigma-rigid ring; sigma-Baer ring; sigma-quasi-Baer ring; sigma-p.q.-Baer ring; sigma-p.p; ring; skew polynomial ring;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring R and sigma be an endomorphism of R. R is called sigma-rigid (resp. reduced) if asigma(a) = 0 (resp. a(2) = 0) for any a is an element of R implies a = 0. An ideal I of R is called a sigma-ideal if sigma(I) subset of or equal to I. R is called sigma-quasi-Baer (resp. right (or left) sigma-p.q.-Baer) if the right annihilator of every sigma-ideal (resp. right (or left.) principal sigma-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[x; sigma] of a ring R is investigated as follows: For a sigma-rigid ring R, (1) R is sigma-quasi-Baer if and only if A is quasi-Baer if and only if A is sigma-quasi-Baer for every extended endomorphism sigma on A of sigma; (2) R is right sigma-p.q.-Baer if and only if R is sigma-p.q.-Baer if and only if A is right sigma-p.q.-Baer if and only if A is p.q.-Baer if and only if A is sigma-p.q.-Baer if and only if A is right sigma-p.q.-Baer for every extended endomorphisin or on A of sigma.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [31] ON TWISTED ORDERED MONOID RINGS OVER QUASI-BAER RINGS
    Ageeb, A.
    Hassanein, A. M.
    Salem, R. M.
    [J]. MATEMATICHE, 2011, 66 (01): : 3 - +
  • [32] ORE EXTENSIONS OF QUASI-BAER RINGS
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2030 - 2039
  • [33] Baer and quasi-Baer annihilator conditions for nearrings and rings
    Birkenmeier, Gary F.
    Kilic, Nayil
    Mutlu, Figen Takil
    Tastan, Edanur
    Tercan, Adnan
    Yasar, Ramazan
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1063 - 1070
  • [34] Group Actions on Quasi-Baer Rings
    Jin, Hai Lan
    Doh, Jaekyung
    Park, Jae Keol
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (04): : 564 - 582
  • [35] Rings which are Baer or quasi-Baer modulo a radical
    Ryan, C. Edward
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4557 - 4564
  • [36] On ore extensions of quasi-Baer rings
    Nasr-Isfahani, A. R.
    Moussavi, A.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (02) : 211 - 224
  • [37] A sheaf representation of quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 146 (03) : 209 - 223
  • [38] A NOTE ON GENERALIZED QUASI-BAER RINGS
    Anzani, M.
    Javadi, H. Haj Seyyed
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (02): : 245 - 248
  • [39] PRINCIPALLY QUASI-BAER SKEW POWER SERIES MODULES
    Manaviyat, R.
    Moussavi, A.
    Habibi, M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (04) : 1278 - 1291
  • [40] On ordered monoid rings over a quasi-Baer ring
    Hirano, Y
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) : 2089 - 2095