On ordered monoid rings over a quasi-Baer ring

被引:31
|
作者
Hirano, Y [1 ]
机构
[1] Okayama Univ, Dept Math, Okayama 700, Japan
关键词
D O I
10.1081/AGB-100002171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. We show that if R is (left principally) quasi-Baer and G is an ordered monoid, then the monoid ring RG is again (left principally) quasi-Baer. When R is (left principally) quasi-Baer and G is an ordered group acting on R, we give a necessary and sufficient condition for the skew group ring R#G to be (left principally) quasi-Baer.
引用
收藏
页码:2089 / 2095
页数:7
相关论文
共 50 条
  • [1] ON TWISTED ORDERED MONOID RINGS OVER QUASI-BAER RINGS
    Ageeb, A.
    Hassanein, A. M.
    Salem, R. M.
    [J]. MATEMATICHE, 2011, 66 (01): : 3 - +
  • [2] THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING
    Hashemi, Ebrahim
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 21 (01): : 1 - 9
  • [3] Skew polynomial rings over σ-quasi-Baer and σ-principally quasi-Baer rings
    Han, J
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (01) : 53 - 63
  • [4] ON BAER AND QUASI-BAER RINGS
    POLLINGHER, A
    ZAKS, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1970, 37 (01) : 127 - +
  • [5] Quasi-Baer ring extensions and biregrular rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (01) : 39 - 52
  • [6] Baer and Quasi-Baer Modules over Some Classes of Rings
    Haily, Abdelfattah
    Rahnaoui, Hamid
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2011, 51 (04): : 375 - 384
  • [7] Generalized quasi-Baer rings
    Moussavi, A
    Javadi, HHS
    Hashemi, E
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2115 - 2129
  • [8] Baer and quasi-Baer differential polynomial rings
    Nasr-Isfahani, A. R.
    Moussavi, A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3533 - 3542
  • [9] ON SKEW QUASI-BAER RINGS
    Habibi, M.
    Moussavi, A.
    Manaviyat, R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3637 - 3648
  • [10] Principally quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) : 639 - 660