Machine learning approach for the ground level aerosol concentration analysis

被引:0
|
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A data-driven approach to forecasting ground-level ozone concentration
    Marvin, Dario
    Nespoli, Lorenzo
    Strepparava, Davide
    Medici, Vasco
    INTERNATIONAL JOURNAL OF FORECASTING, 2022, 38 (03) : 970 - 987
  • [22] Quality monitoring in vibro ground improvement – A hybrid machine learning approach
    Terbuch A.
    Zöhrer A.
    Winter V.
    O‘Leary P.
    Khalili-Motlagh-Kasmaei N.
    Steiner G.
    Geomechanik und Tunnelbau, 2022, 15 (05): : 658 - 664
  • [23] Evaluation of different machine learning approaches for predicting high concentration episodes of ground-level ozone: A case study in Catalonia, Spain
    Vicente, D. J.
    Salazar, F.
    Lopez-Chacon, S. R.
    Soriano, C.
    Martin-Vide, J.
    ATMOSPHERIC POLLUTION RESEARCH, 2024, 15 (03)
  • [24] Estimating ground-level high-resolution ozone concentration across China using a stacked machine-learning method
    Li, Zizheng
    Wang, Weihang
    He, Qingqing
    Chen, Xiuzhen
    Huang, Jiejun
    Zhang, Ming
    ATMOSPHERIC POLLUTION RESEARCH, 2024, 15 (06)
  • [25] Machine learning for improved data analysis of biological aerosol using the WIBS
    Ruske, Simon
    Topping, David O.
    Foot, Virginia E.
    Morse, Andrew P.
    Gallagher, Martin W.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (11) : 6203 - 6230
  • [26] Predicting open education competency level: A machine learning approach
    Ibarra-Vazquez, Gerardo
    Ramirez-Montoya, Maria Soledad
    Buenestado-Fernandez, Mariana
    Olague, Gustavo
    HELIYON, 2023, 9 (11)
  • [27] MLEE: Method Level Energy Estimation - A machine learning approach
    Alvi, Hamza Mustafa
    Majeed, Hammad
    Mujtaba, Hasan
    Beg, Mirza Omer
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2021, 32
  • [28] Machine learning approach to gate-level evolvable hardware
    Iba, H
    Iwata, M
    Higuchi, T
    EVOLVABLE SYSTEMS: FROM BIOLOGY TO HARDWARE, 1997, 1259 : 327 - 343
  • [29] A Machine Learning Approach for Classifying the Default Bug Severity Level
    Aburakhia, Abdalrahman
    Alshayeb, Mohammad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (09) : 13131 - 13148
  • [30] Aerosol Characterization Using Machine Learning
    Natraj, Vijay
    Chen, Sihe
    Zeng, Zhao-Cheng
    Yung, Yuk L.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6638 - 6641