Machine learning approach for the ground level aerosol concentration analysis

被引:0
|
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] ANALYSIS OF AEROSOL CONCENTRATION IN VALLADOLID
    SANCHEZ, ML
    CASANOVA, JL
    ALCOBER, V
    ANALES DE FISICA, 1976, 72 (01): : 52 - 56
  • [42] Estimating daily ground-level NO2 concentrations over China based on TROPOMI observations and machine learning approach
    Long, Shuiju
    Wei, Xiaoli
    Zhang, Feng
    Zhang, Renhe
    Xu, Jian
    Wu, Kun
    Li, Qingqing
    Li, Wenwen
    ATMOSPHERIC ENVIRONMENT, 2022, 289
  • [43] Accuracy Analysis of Machine Learning Methods for Predicting PM Concentration
    Kim, Yeong-Il
    Lee, Kwon-Ho
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2023, 39 (02) : 149 - 164
  • [44] Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia
    Jihyun Nam
    Sang-Woo Kim
    Rokjin J. Park
    Jin-Soo Park
    Sang Seo Park
    Air Quality, Atmosphere & Health, 2018, 11 : 49 - 60
  • [45] Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia
    Nam, Jihyun
    Kim, Sang-Woo
    Park, Rokjin J.
    Park, Jin-Soo
    Park, Sang Seo
    AIR QUALITY ATMOSPHERE AND HEALTH, 2018, 11 (01): : 49 - 60
  • [46] Estimating ground-level ozone concentration in China using ensemble learning methods
    Song S.
    Fan M.
    Tao J.
    Chen S.
    Gu J.
    Han Z.
    Liang X.
    Lu X.
    Wang T.
    Zhang Y.
    National Remote Sensing Bulletin, 2023, 27 (08) : 1792 - 1806
  • [47] A Machine Learning Approach to Retrieving Aerosol Optical Depth Using Solar Radiation Measurements
    Logothetis, Stavros-Andreas
    Salamalikis, Vasileios
    Kazantzidis, Andreas
    REMOTE SENSING, 2024, 16 (07)
  • [48] A novel bagging ensemble approach for predicting summertime ground-level ozone concentration
    Mohan, Sankaralingam
    Saranya, Packiam
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2019, 69 (02) : 220 - 233
  • [49] The effect of rumination and elder abuse level on successful aging in elderly individuals: Analysis with a machine learning approach
    Yildiz, Metin
    Varol, Ela
    Yildirim, Mehmet Salih
    Elkoca, Ayse
    Sarpdagi, Yakup
    PSYCHOGERIATRICS, 2023, 23 (04) : 588 - 602
  • [50] An unsupervised machine learning approach for ground-motion spectra clustering and selection
    Bond, Robert Bailey
    Ren, Pu
    Hajjar, Jerome F.
    Sun, Hao
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (03): : 1107 - 1124