Machine learning approach for the ground level aerosol concentration analysis

被引:0
|
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] DETERMINATION OF MAXIMUM GROUND LEVEL CONCENTRATION
    RANCHOUX, RJP
    JOURNAL OF THE AIR POLLUTION CONTROL ASSOCIATION, 1976, 26 (11): : 1088 - 1089
  • [32] Tree-level citrus yield prediction utilizing ground and aerial machine vision and machine learning
    Vijayakumar, Vinay
    Ampatzidis, Yiannis
    Costa, Lucas
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [33] GROUND-LEVEL CONCENTRATION - REPLY
    BAASEL, WD
    JOURNAL OF THE AIR POLLUTION CONTROL ASSOCIATION, 1981, 31 (11): : 1149 - 1150
  • [34] Constructability analysis: Machine learning approach - Discussion
    Reich, Y
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1998, 12 (03) : 164 - 166
  • [35] A machine learning approach to glow curve analysis
    Kroeninger, Kevin
    Mentzel, Florian
    Theinert, Robert
    Walbersloh, Joerg
    RADIATION MEASUREMENTS, 2019, 125 : 34 - 39
  • [36] Performance analysis in SailGP: A machine learning approach
    Zentai, Benedek
    Toka, Laszlo
    INTERNATIONAL JOURNAL OF SPORTS SCIENCE & COACHING, 2025,
  • [37] A Machine Learning Approach to Triathlon Component Analysis
    Ofoghi, Bahadorreza
    Zeleznikow, John
    MacMahon, Clare
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE IN SPORT (IACSS2011), 2011, : 30 - 33
  • [38] Machine learning approach to muon spectroscopy analysis
    Tula, T.
    Moller, G.
    Quintanilla, J.
    Giblin, S. R.
    Hillier, A. D.
    McCabe, E. E.
    Ramos, S.
    Barker, D. S.
    Gibson, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (19)
  • [39] Constructability analysis: Machine learning approach - Closure
    Arciszewski, T
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1998, 12 (03) : 166 - 167
  • [40] A machine learning approach to nonlinear modal analysis
    Worden, K.
    Green, P. L.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 34 - 53