A posteriori error estimation and anisotropy detection with the dual-weighted residual method

被引:22
|
作者
Richter, Thomas [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, INF 294, D-69120 Heidelberg, Germany
关键词
finite element methods; adaptivity; error estimation; mesh adaptation; anisotropy; Navier-Stokes; STOKES EQUATIONS; INTERPOLATION; STABILIZATION;
D O I
10.1002/fld.2016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we develop a new framework for a posteriori error estimation and detection of anisotropies based on the dual-weighted residual (DWR) method by Becker and Rannacher. The common approach for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors indicate dominant directions and optimal stretching of elements. However, this approach is firmly linked to energy norm error estimation. Here, we extend the DWR method to anisotropic finite elements allowing for the direct estimation of directional errors with regard to given Output functionals. The resulting meshes reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the directional errors. the coarse meshes need some alignment with the dominant anisotropies. Numerical examples will demonstrate the efficiency of this method on various three-dimensional problems including a well-known Navier-Stokes benchmark. Copyright (c) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:90 / 118
页数:29
相关论文
共 50 条
  • [21] The implicit, element residual method for a Posteriori error estimation in FE-BII analysis
    Botha, MM
    Davidson, DB
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (01) : 255 - 258
  • [22] A residual a posteriori error estimate for the Virtual Element Method
    Berrone, Stefano
    Borio, Andrea
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (08): : 1423 - 1458
  • [23] Goal-Oriented Mesh Adaptivity of Three-Dimensional Neutron Transport Calculation Using Weighted Difference Scheme and Dual-Weighted Residual Error Indicators
    Liu, Cong
    Wei, Junxia
    Zhang, Bin
    Li, Jinhong
    Sheng, Zhiqiang
    Tan, Shuang
    NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (11) : 2853 - 2883
  • [24] Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method
    Chouly, Franz
    Fabre, Mathieu
    Hild, Patrick
    Pousin, Jerome
    Renard, Yves
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 921 - 954
  • [25] Stabilized element residual method (SERM): a posteriori error estimation for the advection-diffusion equation
    Stanford Univ, Stanford, United States
    J Comput Appl Math, 1-2 (3-17):
  • [26] Stabilized Element Residual Method (SERM): A posteriori error estimation for the advection-diffusion equation
    Agarwal, AN
    Pinsky, PM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) : 3 - 17
  • [27] A safeguarded dual weighted residual method
    Nochetto, Ricardo H.
    Veeser, Andreas
    Verani, Marco
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (01) : 126 - 140
  • [28] On residual-based a posteriori error estimation in hp-FEM
    J.M. Melenk
    B.I. Wohlmuth
    Advances in Computational Mathematics, 2001, 15 : 311 - 331
  • [29] Residual-based a posteriori error estimation for stochastic magnetostatic problems
    Mac, D. H.
    Tang, Z.
    Clenet, S.
    Creuse, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 51 - 67
  • [30] Residual a posteriori error estimates for the mixed finite element method
    Kirby, R
    COMPUTATIONAL GEOSCIENCES, 2003, 7 (03) : 197 - 214