A posteriori error estimation and anisotropy detection with the dual-weighted residual method

被引:22
|
作者
Richter, Thomas [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, INF 294, D-69120 Heidelberg, Germany
关键词
finite element methods; adaptivity; error estimation; mesh adaptation; anisotropy; Navier-Stokes; STOKES EQUATIONS; INTERPOLATION; STABILIZATION;
D O I
10.1002/fld.2016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we develop a new framework for a posteriori error estimation and detection of anisotropies based on the dual-weighted residual (DWR) method by Becker and Rannacher. The common approach for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors indicate dominant directions and optimal stretching of elements. However, this approach is firmly linked to energy norm error estimation. Here, we extend the DWR method to anisotropic finite elements allowing for the direct estimation of directional errors with regard to given Output functionals. The resulting meshes reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the directional errors. the coarse meshes need some alignment with the dominant anisotropies. Numerical examples will demonstrate the efficiency of this method on various three-dimensional problems including a well-known Navier-Stokes benchmark. Copyright (c) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:90 / 118
页数:29
相关论文
共 50 条
  • [1] TWO-SIDE A POSTERIORI ERROR ESTIMATES FOR THE DUAL-WEIGHTED RESIDUAL METHOD
    Endtmayer, B.
    Langer, U.
    Wick, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A371 - A394
  • [2] Dual-Weighted Residual A Posteriori Error Estimates for a Penalized Phase-Field Slit Discontinuity Problem
    Wick, Thomas
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (03) : 693 - 707
  • [3] Dual weighted residual error estimation for the finite cell method
    Di Stolfo, Paolo
    Rademacher, Andreas
    Schroeder, Andreas
    JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (02) : 101 - 122
  • [4] Enhancing Biomechanical Simulations Based on a Posteriori Error Estimates: The Potential of Dual-Weighted Residual-Driven Adaptive Mesh Refinement
    Bui, Huu Phuoc
    Duprez, Michel
    Rohan, Pierre-Yves
    Lejeune, Arnaud
    Bordas, Stephane P. A.
    Bucki, Marek
    Chouly, Franz
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2025, 41 (01)
  • [5] The Dual-Weighted Residual Estimator Realized on Polygonal Meshes
    Weisser, Steffen
    Wick, Thomas
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (04) : 753 - 776
  • [6] Residual a Posteriori Error Estimation for Frictional Contact with Nitsche Method
    Araya, Rodolfo
    Chouly, Franz
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [7] Residual a Posteriori Error Estimation for Frictional Contact with Nitsche Method
    Rodolfo Araya
    Franz Chouly
    Journal of Scientific Computing, 2023, 96
  • [8] A Partition-of-Unity Dual-Weighted Residual Approach for Multi-Objective Goal Functional Error Estimation Applied to Elliptic Problems
    Endtmayer, Bernhard
    Wick, Thomas
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 575 - 599
  • [9] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599
  • [10] Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals
    Grajewski, M
    Hron, J
    Turek, S
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) : 504 - 518