A posteriori error estimation and anisotropy detection with the dual-weighted residual method

被引:22
|
作者
Richter, Thomas [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, INF 294, D-69120 Heidelberg, Germany
关键词
finite element methods; adaptivity; error estimation; mesh adaptation; anisotropy; Navier-Stokes; STOKES EQUATIONS; INTERPOLATION; STABILIZATION;
D O I
10.1002/fld.2016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we develop a new framework for a posteriori error estimation and detection of anisotropies based on the dual-weighted residual (DWR) method by Becker and Rannacher. The common approach for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors indicate dominant directions and optimal stretching of elements. However, this approach is firmly linked to energy norm error estimation. Here, we extend the DWR method to anisotropic finite elements allowing for the direct estimation of directional errors with regard to given Output functionals. The resulting meshes reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the directional errors. the coarse meshes need some alignment with the dominant anisotropies. Numerical examples will demonstrate the efficiency of this method on various three-dimensional problems including a well-known Navier-Stokes benchmark. Copyright (c) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:90 / 118
页数:29
相关论文
共 50 条
  • [41] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    He, Cuiyu
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2051 - 2079
  • [42] A dual-weighted polarization image fusion method based on quality assessment and attention mechanisms
    Duan, Jin
    Zhang, Hao
    Liu, Ju
    Gao, Meiling
    Cheng, Cai
    Chen, Guangqiu
    FRONTIERS IN PHYSICS, 2023, 11
  • [43] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    Cuiyu He
    Xu Zhang
    Journal of Scientific Computing, 2019, 81 : 2051 - 2079
  • [44] Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1710 - 1732
  • [45] Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method
    Maxim, Andrei
    NUMERISCHE MATHEMATIK, 2007, 106 (02) : 225 - 253
  • [46] Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method
    Andrei Maxim
    Numerische Mathematik, 2007, 106 : 225 - 253
  • [47] Residual-based a posteriori error estimation for mixed virtual element methods
    Munar, Mauricio
    Cangiani, Andrea
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 166 : 182 - 197
  • [48] A residual a posteriori error estimate for the time–domain boundary element method
    Heiko Gimperlein
    Ceyhun Özdemir
    David Stark
    Ernst P. Stephan
    Numerische Mathematik, 2020, 146 : 239 - 280
  • [49] Dual Weighted Residual Error Control for Frictional Contact Problems
    Rademacher, Andreas
    Schroeder, Andreas
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (03) : 391 - 413
  • [50] The dual-weighted-residual method for error control and mesh adaptation in finite element methods
    Rannacher, R
    MATHEMATICS OF FINITE ELEMENTS AND APPLICATIONS X, 2000, : 97 - 116