Mean-field avalanche size exponent for sandpiles on Galton-Watson trees

被引:1
|
作者
Jarai, Antal A. [1 ]
Ruszel, Wioletta M. [2 ,3 ]
Saada, Ellen [4 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[4] Univ Paris 05, Lab MAP5, CNRS, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
关键词
Abelian sandpile; Uniform spanning tree; Conductance martingale; Wired spanning forest; INFINITE VOLUME LIMIT; MODEL;
D O I
10.1007/s00440-019-00951-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that in Abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than t topplings decays as t(-1/2). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (Probab Theory Relat Fields 125:259-265, 2003), thatwas previously used by Lyons et al. (Electron J Probab 13(58):1702-1725, 2008) to study uniform spanning forests on Z(d), d >= 3, and other transient graphs.
引用
收藏
页码:369 / 396
页数:28
相关论文
共 50 条
  • [31] Continuous phase transitions on Galton-Watson trees
    Johnson, Tobias
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (02): : 198 - 228
  • [32] Asymptotic properties of expansive Galton-Watson trees
    Abraham, Romain
    Delmas, Jean-Francois
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [33] Galton-Watson Trees with Vanishing Martingale Limit
    Berestycki, Nathanael
    Gantert, Nina
    Moerters, Peter
    Sidorova, Nadia
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (04) : 737 - 762
  • [34] Random walks on decorated Galton-Watson trees
    Archer, Eleanor
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1849 - 1904
  • [35] Galton-Watson Trees with First Ancestor Interaction
    Dunlop, Francois
    Mardin, Arif
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (03)
  • [36] Rotor-routing on Galton-Watson trees
    Huss, Wilfried
    Muller, Sebastian
    Sava-Huss, Ecaterina
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 12
  • [37] Quenched critical percolation on Galton-Watson trees
    Archer, Eleanor
    Vogel, Quirin
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 32
  • [38] The Phase Transition for Parking on Galton-Watson Trees
    Curien, Nicolas
    Henard, Olivier
    DISCRETE ANALYSIS, 2022, : 1 - 17
  • [39] A random walk approach to Galton-Watson trees
    Bennies, J
    Kersting, G
    JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (03) : 777 - 803
  • [40] Quenched Survival of Bernoulli Percolation on Galton-Watson Trees
    Michelen, Marcus
    Pemantle, Robin
    Rosenberg, Josh
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1323 - 1364