Galton-Watson Trees with First Ancestor Interaction

被引:1
|
作者
Dunlop, Francois [1 ]
Mardin, Arif [2 ]
机构
[1] CY Cergy Paris Univ, CNRS, UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Nesin Matemat Koyu, Sirince Mahallesi 7,Kayserkaya Sokak, TR-35920 Izmir, Turkey
关键词
Random tree; Galton-Watson; Correlation inequalities; FKG; Extinction;
D O I
10.1007/s10955-022-03000-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the set of random Bienayme-Galton-Watson trees with a bounded number of offspring and bounded number of generations as a statistical mechanics model: a random tree is a rooted subtree of the maximal tree; the spin at a given node of the maximal tree is equal to the number of offspring if the node is present in the random tree and equal to -1 otherwise. We introduce nearest neighbour interactions favouring pairs of neighbours which both have a relatively large offspring. We then prove (1) correlation inequalities and (2) recursion relations for generating functions, mean number of external nodes, interaction energy and the corresponding variances. The resulting quadratic dynamical system, in two dimensions or more depending on the desired number of moments, yields almost exact numerical results. The balance between offspring distribution and coupling constant leads to a phase diagram for the analogue of the extinction probability. On the transition line the mean number of external nodes in generation n+ 1 is found numerically to scale as n(-2).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Galton–Watson Trees with First Ancestor Interaction
    François Dunlop
    Arif Mardin
    Journal of Statistical Physics, 2022, 189
  • [2] Galton-Watson Trees
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 11 - 17
  • [3] The genealogy of Galton-Watson trees
    Johnston, Samuel G. G.
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [4] Parking on supercritical Galton-Watson trees
    Bahl, Riti
    Barnet, Philip
    Junge, Matthew
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (02): : 1801 - 1815
  • [5] Long edges in Galton-Watson trees
    Bocharov, Sergey
    Harris, Simon C.
    JOURNAL OF APPLIED PROBABILITY, 2025,
  • [6] Minimax functions on Galton-Watson trees
    Martin, James B.
    Stasinski, Roman
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (03): : 455 - 484
  • [7] On transience of frogs on Galton-Watson trees
    Muller, Sebastian
    Wiegel, Gundelinde Maria
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 30
  • [8] Invasion percolation on Galton-Watson trees
    Michelen, Marcus
    Pemantle, Robin
    Rosenberg, Josh
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [9] Bootstrap percolation on Galton-Watson trees
    Bollobas, Bela
    Gunderson, Karen
    Holmgren, Cecilia
    Janson, Svante
    Przykucki, Michal
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 27
  • [10] Root estimation in Galton-Watson trees
    Brandenberger, Anna M.
    Devroye, Luc
    Goh, Marcel K.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 520 - 542