Galton-Watson Trees with First Ancestor Interaction

被引:1
|
作者
Dunlop, Francois [1 ]
Mardin, Arif [2 ]
机构
[1] CY Cergy Paris Univ, CNRS, UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Nesin Matemat Koyu, Sirince Mahallesi 7,Kayserkaya Sokak, TR-35920 Izmir, Turkey
关键词
Random tree; Galton-Watson; Correlation inequalities; FKG; Extinction;
D O I
10.1007/s10955-022-03000-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the set of random Bienayme-Galton-Watson trees with a bounded number of offspring and bounded number of generations as a statistical mechanics model: a random tree is a rooted subtree of the maximal tree; the spin at a given node of the maximal tree is equal to the number of offspring if the node is present in the random tree and equal to -1 otherwise. We introduce nearest neighbour interactions favouring pairs of neighbours which both have a relatively large offspring. We then prove (1) correlation inequalities and (2) recursion relations for generating functions, mean number of external nodes, interaction energy and the corresponding variances. The resulting quadratic dynamical system, in two dimensions or more depending on the desired number of moments, yields almost exact numerical results. The balance between offspring distribution and coupling constant leads to a phase diagram for the analogue of the extinction probability. On the transition line the mean number of external nodes in generation n+ 1 is found numerically to scale as n(-2).
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Independent random cascades on Galton-Watson trees
    Burd, GA
    Waymire, EC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2753 - 2761
  • [22] Biased Random Walks on Galton-Watson Trees
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 107 - 114
  • [23] Recursive functions on conditional Galton-Watson trees
    Broutin, Nicolas
    Devroye, Luc
    Fraiman, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (02) : 304 - 316
  • [24] Extreme order statistics on Galton-Watson trees
    Pakes, AG
    METRIKA, 1998, 47 (02) : 95 - 117
  • [25] Continuous phase transitions on Galton-Watson trees
    Johnson, Tobias
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (02): : 198 - 228
  • [26] Asymptotic properties of expansive Galton-Watson trees
    Abraham, Romain
    Delmas, Jean-Francois
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [27] Galton-Watson Trees with Vanishing Martingale Limit
    Berestycki, Nathanael
    Gantert, Nina
    Moerters, Peter
    Sidorova, Nadia
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (04) : 737 - 762
  • [28] Random walks on decorated Galton-Watson trees
    Archer, Eleanor
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1849 - 1904
  • [29] The width of Galton-Watson trees conditioned by the size
    Drmota, M
    Gittenberger, B
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2004, 6 (02): : 387 - 400
  • [30] Rotor-routing on Galton-Watson trees
    Huss, Wilfried
    Muller, Sebastian
    Sava-Huss, Ecaterina
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 12