A random walk approach to Galton-Watson trees

被引:19
|
作者
Bennies, J [1 ]
Kersting, G [1 ]
机构
[1] Goethe Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
关键词
branching processes; Galton-Watson trees; random walk excursions; random walk bridges; functional limit theorem;
D O I
10.1023/A:1007862612753
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are several constructions connecting random walks to branching trees. Here we discuss an approach linking Galton-Watson trees with arbitrary offspring distribution to random walk excursions resp. bridges. In special situations this leads to a connection to three basic statistics from statistical mechanics. Other applications include the description of random subtrees and the contour process of a Galton-Watson tree.
引用
收藏
页码:777 / 803
页数:27
相关论文
共 50 条
  • [1] The speed of random walk on Galton-Watson trees with vanishing conductances
    Glatzel, Tabea
    Nagel, Jan
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [2] General random walk in a random environment defined on Galton-Watson trees
    Barbour, A. D.
    Collevecchio, Andrea
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1657 - 1674
  • [3] Range and critical generations of a random walk on Galton-Watson trees
    Andreoletti, Pierre
    Chen, Xinxin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 466 - 513
  • [4] Einstein relation for biased random walk on Galton-Watson trees
    Ben Arous, Gerard
    Hu, Yueyun
    Olla, Stefano
    Zeitouni, Ofer
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (03): : 698 - 721
  • [5] A Random Walk Approach to Galton–Watson Trees
    Jürgen Bennies
    Götz Kersting
    Journal of Theoretical Probability, 2000, 13 : 777 - 803
  • [6] The branching random walk and contact process on Galton-Watson and nonhomogeneous trees
    Pemantle, R
    Stacey, AM
    ANNALS OF PROBABILITY, 2001, 29 (04): : 1563 - 1590
  • [7] On the transience and recurrence of Lamperti's random walk on Galton-Watson trees
    Wenming Hong
    Minzhi Liu
    Science China Mathematics, 2019, 62 : 1813 - 1822
  • [8] On the transience and recurrence of Lamperti's random walk on Galton-Watson trees
    Wenming Hong
    Minzhi Liu
    Science China Mathematics, 2019, (09) : 1813 - 1822
  • [9] On the transience and recurrence of Lamperti's random walk on Galton-Watson trees
    Hong, Wenming
    Liu, Minzhi
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (09) : 1813 - 1822
  • [10] Biased random walk on critical Galton-Watson trees conditioned to survive
    Croydon, D. A.
    Fribergh, A.
    Kumagai, T.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) : 453 - 507