Mean-field avalanche size exponent for sandpiles on Galton-Watson trees

被引:1
|
作者
Jarai, Antal A. [1 ]
Ruszel, Wioletta M. [2 ,3 ]
Saada, Ellen [4 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[4] Univ Paris 05, Lab MAP5, CNRS, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
关键词
Abelian sandpile; Uniform spanning tree; Conductance martingale; Wired spanning forest; INFINITE VOLUME LIMIT; MODEL;
D O I
10.1007/s00440-019-00951-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that in Abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than t topplings decays as t(-1/2). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (Probab Theory Relat Fields 125:259-265, 2003), thatwas previously used by Lyons et al. (Electron J Probab 13(58):1702-1725, 2008) to study uniform spanning forests on Z(d), d >= 3, and other transient graphs.
引用
收藏
页码:369 / 396
页数:28
相关论文
共 50 条
  • [41] Average properties of random walks on Galton-Watson trees
    Chen, DY
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (03): : 359 - 369
  • [42] Stochastic Ordering of Infinite Geometric Galton-Watson Trees
    Broman, Erik I.
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (03) : 1069 - 1082
  • [43] Conditioning Galton-Watson Trees on Large Maximal Outdegree
    He, Xin
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 842 - 851
  • [44] Inversions in Split Trees and Conditional Galton-Watson Treest
    Cai, Xing Shi
    Holmgren, Cecilia
    Janson, Svante
    Johansson, Tony
    Skerman, Fiona
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (03): : 335 - 364
  • [45] Random walks on Galton-Watson trees with random conductances
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1652 - 1671
  • [46] A System of Grabbing Particles Related to Galton-Watson Trees
    Bertoin, Jean
    Sidoravicius, Vladas
    Vares, Maria Eulalia
    RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (04) : 477 - 487
  • [47] Unimodularity for multi-type Galton-Watson trees
    Altok, Serdar
    BERNOULLI, 2013, 19 (03) : 780 - 802
  • [48] Lower bounds for bootstrap percolation on Galton-Watson trees
    Gunderson, Karen
    Przykucki, Michal
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 7
  • [49] Vertices with fixed outdegrees in large Galton-Watson trees
    Thevenin, Paul
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 25
  • [50] Invariance principles for spatial multitype Galton-Watson trees
    Miermont, Gregory
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (06): : 1128 - 1161