Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review

被引:48
|
作者
Ansart, Manon [1 ,2 ,3 ,4 ,5 ]
Epelbaum, Stephane [1 ,2 ,3 ,4 ,5 ,6 ]
Bassignana, Giulia [1 ,2 ,3 ,4 ,5 ]
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bottani, Simona [1 ,2 ,3 ,4 ,5 ]
Cattai, Tiziana [1 ,2 ,3 ,4 ,5 ,8 ]
Couronne, Raphael [1 ,2 ,3 ,4 ,5 ]
Faouzi, Johann [1 ,2 ,3 ,4 ,5 ]
Koval, Igor [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Thibeau-Sutre, Elina [1 ,2 ,3 ,4 ,5 ]
Wen, Junhao [1 ,2 ,3 ,4 ,5 ]
Wild, Adam [1 ,2 ,3 ,4 ,5 ]
Burgos, Ninon [1 ,2 ,3 ,4 ,5 ]
Dormont, Didier [1 ,2 ,3 ,4 ,5 ,7 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Natl Reference Ctr Rare Early Dementias,Dept Neur, Inst Memory & Alzheimers Dis IM2A,Ctr Excellence, Blvd Hop, Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France
[8] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Quantitative review; Alzheimer's disease; Mild cognitive impairment; Progression; Automatic prediction; Cognition; ALZHEIMERS-DISEASE; CROSS-VALIDATION; CONVERSION; CLASSIFICATION; MCI; DIAGNOSIS; CRITERIA; ATROPHY; MRI;
D O I
10.1016/j.media.2020.101848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review
    Sergio Grueso
    Raquel Viejo-Sobera
    [J]. Alzheimer's Research & Therapy, 13
  • [2] Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer's disease dementia: a systematic review
    Grueso, Sergio
    Viejo-Sobera, Raquel
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2021, 13 (01)
  • [3] A systematic review on early prediction of Mild cognitive impairment to alzheimers using machine learning algorithms
    Muhammed Niyas K.P.
    Thiyagarajan P.
    [J]. International Journal of Intelligent Networks, 2023, 4 : 74 - 88
  • [4] Predicting Progression to Mild Cognitive Impairment
    Petersen, Ronald C.
    Lundt, Emily S.
    Therneau, Terry M.
    Weigand, Stephen D.
    Knopman, David S.
    Mielke, Michelle M.
    Roberts, Rosebud O.
    Lowe, Val J.
    Machulda, Mary M.
    Kremers, Walter K.
    Geda, Yonas E.
    Jack, Clifford R., Jr.
    [J]. ANNALS OF NEUROLOGY, 2019, 85 (01) : 155 - 160
  • [5] A Machine Learning Framework for Predicting Dementia and Mild Cognitive Impairment
    Stamate, Daniel
    Alghamdi, Wajdi
    Ogg, Jeremy
    Hoile, Richard
    Murtagh, Fionn
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 671 - 678
  • [6] Relevance of Complaint Severity in Predicting the Progression of Subjective Cognitive Decline and Mild Cognitive Impairment: A Machine Learning Approach
    Xose Pereiro, Arturo
    Valladares-Rodriguez, Sonia
    Felpete, Alba
    Lojo-Seoane, Cristina
    Campos-Magdaleno, Maria
    Carme Mallo, Sabela
    Facal, David
    Anido-Rifon, Luis
    Belleville, Sylvie
    Juncos-Rabadan, Onesimo
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2021, 82 (03) : 1229 - 1242
  • [7] Predicting Amyloid-β Levels in Amnestic Mild Cognitive Impairment Using Machine Learning Techniques
    Ezzati, Ali
    Harvey, Danielle J.
    Habeck, Christian
    Golzar, Ashkan
    Qureshi, Irfan A.
    Zammit, Andrea R.
    Hyun, Jinshil
    Truelove-Hill, Monica
    Hall, Charles B.
    Davatzikos, Christos
    Lipton, Richard B.
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2020, 73 (03) : 1211 - 1219
  • [8] Predicting the Rapid Progression of Mild Cognitive Impairment by Intestinal Flora and Blood Indicators through Machine Learning Method
    Wang, Lingling
    Yan, Jing
    Liu, Huiqin
    Zhao, Xiaohui
    Song, Haihan
    Yang, Juan
    [J]. NEURODEGENERATIVE DISEASES, 2024, 23 (3-4) : 43 - 52
  • [9] Mild cognitive impairment: A systematic review
    Mariani, Elena
    Monastero, Roberto
    Mecocci, Patrizia
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2007, 12 (01) : 23 - 35
  • [10] Progression of Gait Changes in Older Adults With Mild Cognitive Impairment: A Systematic Review
    Masse, Fernando Arturo Arriagada
    Ansai, Juliana Hotta
    Fiogbe, Elie
    Rossi, Paulo Giusti
    Vilarinho, Ana Carolina Goncalves
    de Medeiros Takahashi, Anielle Cristhine
    de Andrade, Larissa Pires
    [J]. JOURNAL OF GERIATRIC PHYSICAL THERAPY, 2021, 44 (02) : 119 - 124