Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review

被引:54
|
作者
Ansart, Manon [1 ,2 ,3 ,4 ,5 ]
Epelbaum, Stephane [1 ,2 ,3 ,4 ,5 ,6 ]
Bassignana, Giulia [1 ,2 ,3 ,4 ,5 ]
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bottani, Simona [1 ,2 ,3 ,4 ,5 ]
Cattai, Tiziana [1 ,2 ,3 ,4 ,5 ,8 ]
Couronne, Raphael [1 ,2 ,3 ,4 ,5 ]
Faouzi, Johann [1 ,2 ,3 ,4 ,5 ]
Koval, Igor [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Thibeau-Sutre, Elina [1 ,2 ,3 ,4 ,5 ]
Wen, Junhao [1 ,2 ,3 ,4 ,5 ]
Wild, Adam [1 ,2 ,3 ,4 ,5 ]
Burgos, Ninon [1 ,2 ,3 ,4 ,5 ]
Dormont, Didier [1 ,2 ,3 ,4 ,5 ,7 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Natl Reference Ctr Rare Early Dementias,Dept Neur, Inst Memory & Alzheimers Dis IM2A,Ctr Excellence, Blvd Hop, Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France
[8] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Quantitative review; Alzheimer's disease; Mild cognitive impairment; Progression; Automatic prediction; Cognition; ALZHEIMERS-DISEASE; CROSS-VALIDATION; CONVERSION; CLASSIFICATION; MCI; DIAGNOSIS; CRITERIA; ATROPHY; MRI;
D O I
10.1016/j.media.2020.101848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Identification of Mild Cognitive Impairment by Machine Learning Algorithm
    Haozhen Li
    Neural Computing and Applications, 2023, 35 : 25121 - 25130
  • [42] Cognitive intervention in amnestic Mild Cognitive Impairment: A systematic review
    Simon, Sharon Sanz
    Yokomizo, Juliana Emy
    Bottino, Cassio M. C.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2012, 36 (04): : 1163 - 1178
  • [43] Identification of Dementia & Mild Cognitive Impairment in Chinese Elderly Using Machine Learning
    Ying, Tong-Tong
    Zhuang, Li-Ying
    Xu, Shan-Hu
    Zhang, Shu-Feng
    Huang, Li-Jun
    Gao, Wei-Wei
    Liu, Lu
    Lai, Qi-Lun
    Lou, Yue
    Liu, Xiao-Li
    AMERICAN JOURNAL OF ALZHEIMERS DISEASE AND OTHER DEMENTIAS, 2024, 39
  • [44] Predicting Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment and Alzheimer's Disease Dementia Using Ensemble Machine Learning
    Dolcet-Negre, Marta M.
    Aguayo, Laura Imaz
    Garcia-De-Eulate, Reyes
    Marti-Andres, Gloria
    Fernandez-Matarrubia, Marta
    Dominguez, Pablo
    Fernandez-Seara, Maria A.
    Riverol, Mario
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 93 (01) : 125 - 140
  • [45] Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia
    Naro, Antonino
    Corallo, Francesco
    De Salvo, Simona
    Marra, Angela
    Di Lorenzo, Giuseppe
    Muscara, Nunzio
    Russo, Margherita
    Marino, Silvia
    De Luca, Rosaria
    Bramanti, Placido
    Calabro, Rocco Salvatore
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 53 (04) : 1375 - 1388
  • [46] Predicting Cognitive Impairment and Dementia: A Machine Learning Approach
    Aschwanden, Damaris
    Aichele, Stephen
    Ghisletta, Paolo
    Terracciano, Antonio
    Kliegel, Matthias
    Sutin, Angelina R.
    Brown, Justin
    Allemand, Mathias
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 75 (03) : 717 - 728
  • [47] Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review
    Beishon, Lucy
    Haunton, Victoria J.
    Panerai, Ronney B.
    Robinson, Thompson G.
    JOURNAL OF ALZHEIMERS DISEASE, 2017, 59 (01) : 369 - 385
  • [48] Tai chi for mild cognitive impairment: a systematic review
    Zheng, Wei
    Xiang, Ying-Qiang
    Ungvari, Gabor S.
    Chiu, Helen F. K.
    Ning, Yu-Ping
    Yu, Xin
    Forester, Brent P.
    Xiang, Yu-Tao
    PSYCHOGERIATRICS, 2017, 17 (06) : 514 - 516
  • [49] The Prevalence of Mild Cognitive Impairment in China: A Systematic Review
    Xue, Jiang
    Li, Jiarui
    Liang, Jiaming
    Chen, Shulin
    AGING AND DISEASE, 2018, 9 (04): : 706 - 715
  • [50] A Systematic Review of Neuropsychiatric Symptoms in Mild Cognitive Impairment
    Monastero, Roberto
    Mangialasche, Francesca
    Camarda, Cecilia
    Ercolani, Sara
    Camarda, Rosolino
    JOURNAL OF ALZHEIMERS DISEASE, 2009, 18 (01) : 11 - 30