Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review

被引:48
|
作者
Ansart, Manon [1 ,2 ,3 ,4 ,5 ]
Epelbaum, Stephane [1 ,2 ,3 ,4 ,5 ,6 ]
Bassignana, Giulia [1 ,2 ,3 ,4 ,5 ]
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bottani, Simona [1 ,2 ,3 ,4 ,5 ]
Cattai, Tiziana [1 ,2 ,3 ,4 ,5 ,8 ]
Couronne, Raphael [1 ,2 ,3 ,4 ,5 ]
Faouzi, Johann [1 ,2 ,3 ,4 ,5 ]
Koval, Igor [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Thibeau-Sutre, Elina [1 ,2 ,3 ,4 ,5 ]
Wen, Junhao [1 ,2 ,3 ,4 ,5 ]
Wild, Adam [1 ,2 ,3 ,4 ,5 ]
Burgos, Ninon [1 ,2 ,3 ,4 ,5 ]
Dormont, Didier [1 ,2 ,3 ,4 ,5 ,7 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Natl Reference Ctr Rare Early Dementias,Dept Neur, Inst Memory & Alzheimers Dis IM2A,Ctr Excellence, Blvd Hop, Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France
[8] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Quantitative review; Alzheimer's disease; Mild cognitive impairment; Progression; Automatic prediction; Cognition; ALZHEIMERS-DISEASE; CROSS-VALIDATION; CONVERSION; CLASSIFICATION; MCI; DIAGNOSIS; CRITERIA; ATROPHY; MRI;
D O I
10.1016/j.media.2020.101848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Mild cognitive impairment and mood: a systematic review
    Yates, Jennifer A.
    Clare, Linda
    Woods, Robert T.
    [J]. REVIEWS IN CLINICAL GERONTOLOGY, 2013, 23 (04) : 317 - 356
  • [22] Incidence of Mild Cognitive Impairment: A Systematic Review
    Luck, Tobias
    Luppa, Melanie
    Briel, Susanne
    Riedel-Heller, Steffi G.
    [J]. DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2010, 29 (02) : 164 - 175
  • [23] INCIDENCE OF MILD COGNITIVE IMPAIRMENT: A SYSTEMATIC REVIEW
    Luck, T.
    Luppa, M.
    Briel, S.
    Riedel-Heller, S. G.
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2011, 65 : A128 - A129
  • [24] Treatment for mild cognitive impairment: systematic review
    Cooper, Claudia
    Li, Ryan
    Lyketsos, Constantine
    Livingston, Gill
    [J]. BRITISH JOURNAL OF PSYCHIATRY, 2013, 203 (04) : 255 - 264
  • [25] MicroRNAs and mild cognitive impairment: A systematic review
    Piscopo, Paola
    Lacorte, Eleonora
    Feligioni, Marco
    Mayer, Flavia
    Crestini, Alessio
    Piccolo, Laura
    Bacigalupo, Ilaria
    Filareti, Melania
    Ficulle, Elena
    Confaloni, Annamaria
    Vanacore, Nicola
    Corbo, Massimo
    [J]. AGEING RESEARCH REVIEWS, 2019, 50 : 131 - 141
  • [26] Screening for mild cognitive impairment: a systematic review
    Lonie, Jane A.
    Tierney, Kevin M.
    Ebmeier, Klaus P.
    [J]. INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2009, 24 (09) : 902 - 915
  • [27] Incidence of mild cognitive impairment - a systematic review
    Luck, T.
    Luppa, M.
    Briel, S.
    Riedel-Heller, S. G.
    [J]. PSYCHIATRISCHE PRAXIS, 2011, 38
  • [28] Neuroimaging and machine learning for studying the pathways from mild cognitive impairment to alzheimer's disease: a systematic review
    Ahmadzadeh, Maryam
    Christie, Gregory J.
    Cosco, Theodore D.
    Arab, Ali
    Mansouri, Mehrdad
    Wagner, Kevin R.
    DiPaola, Steve
    Moreno, Sylvain
    [J]. BMC NEUROLOGY, 2023, 23 (01)
  • [29] Neuroimaging and machine learning for studying the pathways from mild cognitive impairment to alzheimer’s disease: a systematic review
    Maryam Ahmadzadeh
    Gregory J. Christie
    Theodore D. Cosco
    Ali Arab
    Mehrdad Mansouri
    Kevin R. Wagner
    Steve DiPaola
    Sylvain Moreno
    [J]. BMC Neurology, 23
  • [30] Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment
    Alahmadi, Hanin H.
    Shen, Yuan
    Fouad, Shereen
    Luft, Caroline Di B.
    Bentham, Peter
    Kourtzi, Zoe
    Tino, Peter
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10