Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review

被引:54
|
作者
Ansart, Manon [1 ,2 ,3 ,4 ,5 ]
Epelbaum, Stephane [1 ,2 ,3 ,4 ,5 ,6 ]
Bassignana, Giulia [1 ,2 ,3 ,4 ,5 ]
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bottani, Simona [1 ,2 ,3 ,4 ,5 ]
Cattai, Tiziana [1 ,2 ,3 ,4 ,5 ,8 ]
Couronne, Raphael [1 ,2 ,3 ,4 ,5 ]
Faouzi, Johann [1 ,2 ,3 ,4 ,5 ]
Koval, Igor [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Thibeau-Sutre, Elina [1 ,2 ,3 ,4 ,5 ]
Wen, Junhao [1 ,2 ,3 ,4 ,5 ]
Wild, Adam [1 ,2 ,3 ,4 ,5 ]
Burgos, Ninon [1 ,2 ,3 ,4 ,5 ]
Dormont, Didier [1 ,2 ,3 ,4 ,5 ,7 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Natl Reference Ctr Rare Early Dementias,Dept Neur, Inst Memory & Alzheimers Dis IM2A,Ctr Excellence, Blvd Hop, Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France
[8] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Quantitative review; Alzheimer's disease; Mild cognitive impairment; Progression; Automatic prediction; Cognition; ALZHEIMERS-DISEASE; CROSS-VALIDATION; CONVERSION; CLASSIFICATION; MCI; DIAGNOSIS; CRITERIA; ATROPHY; MRI;
D O I
10.1016/j.media.2020.101848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Neuroimaging and machine learning for studying the pathways from mild cognitive impairment to alzheimer’s disease: a systematic review
    Maryam Ahmadzadeh
    Gregory J. Christie
    Theodore D. Cosco
    Ali Arab
    Mehrdad Mansouri
    Kevin R. Wagner
    Steve DiPaola
    Sylvain Moreno
    BMC Neurology, 23
  • [32] Understanding the role of machine learning in predicting progression of osteoarthritis A SYSTEMATIC REVIEW
    Castagno, S.
    Gompels, B.
    Strangmark, E.
    Robertson- Waters, E.
    Birch, M.
    van der Schaar, M.
    McCaskie, A. W.
    BONE & JOINT JOURNAL, 2024, 106B (11): : 1216 - 1222
  • [33] Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment
    Alahmadi, Hanin H.
    Shen, Yuan
    Fouad, Shereen
    Luft, Caroline Di B.
    Bentham, Peter
    Kourtzi, Zoe
    Tino, Peter
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [34] Predicting progression to dementia in persons with mild cognitive impairment using cerebrospinal fluid markers
    Handels, Ron L. H.
    Vos, Stephanie J. B.
    Kramberger, Milica G.
    Jelic, Vesna
    Blennow, Kaj
    van Buchem, Mark
    van der Flier, Wiesje
    Freund-Levi, Yvonne
    Hampel, Harald
    Rikkert, Marcel Olde
    Oleksik, Ania
    Pirtosek, Zvezdan
    Scheltens, Philip
    Soininen, Hilkka
    Teunissen, Charlotte
    Tsolaki, Magda
    Wallin, Asa K.
    Winblad, Bengt
    Verhey, Frans R. J.
    Visser, Pieter Jelle
    ALZHEIMERS & DEMENTIA, 2017, 13 (08) : 903 - 912
  • [35] Predicting cognitive impairment in outpatients with epilepsy using machine learning techniques
    Lin, Feng
    Han, Jiarui
    Xue, Teng
    Lin, Jilan
    Chen, Shenggen
    Zhu, Chaofeng
    Lin, Han
    Chen, Xianyang
    Lin, Wanhui
    Huang, Huapin
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Predicting cognitive impairment in outpatients with epilepsy using machine learning techniques
    Feng Lin
    Jiarui Han
    Teng Xue
    Jilan Lin
    Shenggen Chen
    Chaofeng Zhu
    Han Lin
    Xianyang Chen
    Wanhui Lin
    Huapin Huang
    Scientific Reports, 11
  • [37] Predicting amputation using machine learning: A systematic review
    Yao, Patrick Fangping
    Diao, Yi David
    Mcmullen, Eric P.
    Manka, Marlin
    Murphy, Jessica
    Lin, Celina
    PLOS ONE, 2023, 18 (11):
  • [38] Predicting Hypoxia Using Machine Learning: Systematic Review
    Pigat, Lena
    Geisler, Benjamin P.
    Sheikhalishahi, Seyedmostafa
    Sander, Julia
    Kaspar, Mathias
    Schmutz, Maximilian
    Rohr, Sven Olaf
    Wild, Carl Mathis
    Goss, Sebastian
    Zaghdoudi, Sarra
    Hinske, Ludwig Christian
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [39] Predicting Progression to Dementia in Elderly Subjects with Mild Cognitive Impairment Using Both Cognitive and Neuroimaging Predictors
    Peters, Frederic
    Villeneuve, Sylvia
    Belleville, Sylvie
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 38 (02) : 307 - 318
  • [40] Identification of Mild Cognitive Impairment by Machine Learning Algorithm
    Li, Haozhen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (36): : 25121 - 25130