Analysis on Laakso graphs with application to the structure of transportation cost spaces

被引:4
|
作者
Dilworth, S. J. [1 ]
Kutzarova, Denka [2 ,3 ]
Ostrovskii, Mikhail I. [4 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA
基金
美国国家科学基金会;
关键词
Analysis on Laakso graphs; Arens-Eells space; Diamond graphs; Earth mover distance; Kantorovich-Rubinstein distance; Laakso graphs; Lipschitz-free space; Transportation cost; Wasserstein distance; METRIC-SPACES; EMBEDDINGS;
D O I
10.1007/s11117-021-00821-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a continuation of our article in Dilworth et al. (Can J Math 72:774-804, 2020). We construct orthogonal bases of the cycle and cut spaces of the Laakso graph L-n. They are used to analyze projections from the edge space onto the cycle space and to obtain reasonably sharp estimates of the projection constant of Lip(0)(L-n), the space of Lipschitz functions on L-n. We deduce that the Banach-Mazur distance from TC(L-n), the transportation cost space of L-n, to l(1)(N) of the same dimension is at least (3n - 5)/8, which is the analogue of a result from [op. cit.] for the diamond graph D-n. We calculate the exact projection constants of Lip(0)(D-n,D-k), where D-n,D-k is the diamond graph of branching k. We also provide simple examples of finite metric spaces, transportation cost spaces on which contain l(infinity)(3) and l(infinity)(4) isometrically.
引用
收藏
页码:1403 / 1435
页数:33
相关论文
共 50 条
  • [1] Analysis on Laakso graphs with application to the structure of transportation cost spaces
    S. J. Dilworth
    Denka Kutzarova
    Mikhail I. Ostrovskii
    Positivity, 2021, 25 : 1403 - 1435
  • [2] Metric embeddings of Laakso graphs into Banach spaces
    S. J. Dilworth
    Denka Kutzarova
    Svetozar Stankov
    Banach Journal of Mathematical Analysis, 2022, 16
  • [3] Metric embeddings of Laakso graphs into Banach spaces
    Dilworth, S. J.
    Kutzarova, Denka
    Stankov, Svetozar
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [4] Isometric structure of transportation cost spaces on finite metric spaces
    Sofiya Ostrovska
    Mikhail I. Ostrovskii
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [5] Isometric structure of transportation cost spaces on finite metric spaces
    Ostrovska, Sofiya
    Ostrovskii, Mikhail, I
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [6] Generalized Transportation Cost Spaces
    Ostrovska, Sofiya
    Ostrovskii, Mikhail I.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (06)
  • [7] Generalized Transportation Cost Spaces
    Sofiya Ostrovska
    Mikhail I. Ostrovskii
    Mediterranean Journal of Mathematics, 2019, 16
  • [8] Wavelets on graphs with application to transportation networks
    Mohan, Dhanya Menoth
    Asif, Muhammad Tayyab
    Mitrovic, Nikola
    Dauwels, Justin
    Jaillet, Patrick
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 1707 - 1712
  • [9] Benefit-cost analysis and application of intelligent compaction for transportation
    Savan, Christopher M.
    Ng, Kam W.
    Ksaibati, Khaled
    TRANSPORTATION GEOTECHNICS, 2016, 9 : 57 - 68
  • [10] COST ANALYSIS IN TRANSPORTATION
    Edwards, Ford K.
    AMERICAN ECONOMIC REVIEW, 1947, 37 (02): : 441 - 461