Analysis on Laakso graphs with application to the structure of transportation cost spaces

被引:4
|
作者
Dilworth, S. J. [1 ]
Kutzarova, Denka [2 ,3 ]
Ostrovskii, Mikhail I. [4 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA
基金
美国国家科学基金会;
关键词
Analysis on Laakso graphs; Arens-Eells space; Diamond graphs; Earth mover distance; Kantorovich-Rubinstein distance; Laakso graphs; Lipschitz-free space; Transportation cost; Wasserstein distance; METRIC-SPACES; EMBEDDINGS;
D O I
10.1007/s11117-021-00821-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a continuation of our article in Dilworth et al. (Can J Math 72:774-804, 2020). We construct orthogonal bases of the cycle and cut spaces of the Laakso graph L-n. They are used to analyze projections from the edge space onto the cycle space and to obtain reasonably sharp estimates of the projection constant of Lip(0)(L-n), the space of Lipschitz functions on L-n. We deduce that the Banach-Mazur distance from TC(L-n), the transportation cost space of L-n, to l(1)(N) of the same dimension is at least (3n - 5)/8, which is the analogue of a result from [op. cit.] for the diamond graph D-n. We calculate the exact projection constants of Lip(0)(D-n,D-k), where D-n,D-k is the diamond graph of branching k. We also provide simple examples of finite metric spaces, transportation cost spaces on which contain l(infinity)(3) and l(infinity)(4) isometrically.
引用
收藏
页码:1403 / 1435
页数:33
相关论文
共 50 条
  • [31] Total cost analysis: An alternative to benefit-cost analysis in evaluating transportation alternatives
    DeCorlaSouza, P
    Everett, J
    Gardner, B
    Culp, M
    TRANSPORTATION, 1997, 24 (02) : 107 - 123
  • [32] Approach and Application of Transportation State Analysis
    Zhang Ye
    Jia Limin
    Cai Guoqiang
    Guo Min
    NCM 2008: 4TH INTERNATIONAL CONFERENCE ON NETWORKED COMPUTING AND ADVANCED INFORMATION MANAGEMENT, VOL 2, PROCEEDINGS, 2008, : 260 - 265
  • [33] BIM Application Analysis in Transportation Project
    Zhang, Chi
    Zhao, Kai
    Li, Jiaqi
    CONSTRUCTION AND URBAN PLANNING, PTS 1-4, 2013, 671-674 : 2986 - +
  • [34] Sensitivity analysis of the minimal cost solution by and/or graphs
    Hvalica, D
    SOR 05 PROCEEDINGS, 2005, : 351 - 356
  • [35] Application: Analysis on spaces of paths
    不详
    ON THE GOEMETRY OF DIFFUSION OPERATORS AND STOCHASTIC FLOWS, 1999, 1720 : 76 - 86
  • [36] Cost Models and Cost Factors of Road Freight Transportation: A Literature Review and Model Structure
    Izadi, Amir
    Nabipour, Mohammad
    Titidezh, Omid
    FUZZY INFORMATION AND ENGINEERING, 2019, 11 (03) : 257 - 278
  • [37] On structure of some plane graphs with application to choosability
    Lam, PCB
    Shiu, WC
    Xu, BG
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 285 - 296
  • [38] Transportation-cost inequalities on path spaces over manifolds carrying geometric flows
    Cheng, Li-Juan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (05): : 541 - 561
  • [39] COST AND SCHEDULE ESTIMATE -RISK ANALYSIS FOR TRANSPORTATION INFRASTRUCTURES
    Cretu, Ovidiu S.
    IMECE2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 13, 2010, : 331 - 340
  • [40] NONLINEAR COST NETWORK MODELS IN TRANSPORTATION ANALYSIS.
    Florian, Michael
    1600, (26):