Analysis on Laakso graphs with application to the structure of transportation cost spaces

被引:4
|
作者
Dilworth, S. J. [1 ]
Kutzarova, Denka [2 ,3 ]
Ostrovskii, Mikhail I. [4 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA
基金
美国国家科学基金会;
关键词
Analysis on Laakso graphs; Arens-Eells space; Diamond graphs; Earth mover distance; Kantorovich-Rubinstein distance; Laakso graphs; Lipschitz-free space; Transportation cost; Wasserstein distance; METRIC-SPACES; EMBEDDINGS;
D O I
10.1007/s11117-021-00821-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a continuation of our article in Dilworth et al. (Can J Math 72:774-804, 2020). We construct orthogonal bases of the cycle and cut spaces of the Laakso graph L-n. They are used to analyze projections from the edge space onto the cycle space and to obtain reasonably sharp estimates of the projection constant of Lip(0)(L-n), the space of Lipschitz functions on L-n. We deduce that the Banach-Mazur distance from TC(L-n), the transportation cost space of L-n, to l(1)(N) of the same dimension is at least (3n - 5)/8, which is the analogue of a result from [op. cit.] for the diamond graph D-n. We calculate the exact projection constants of Lip(0)(D-n,D-k), where D-n,D-k is the diamond graph of branching k. We also provide simple examples of finite metric spaces, transportation cost spaces on which contain l(infinity)(3) and l(infinity)(4) isometrically.
引用
收藏
页码:1403 / 1435
页数:33
相关论文
共 50 条
  • [21] Complementability of isometric copies of l1 in transportation cost spaces
    Ostrovska, Sofiya
    Ostrovskii, Mikhail I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [22] Chained structure of directed graphs with applications to social and transportation networks
    Concas, Anna
    Fenu, Caterina
    Reichel, Lothar
    Rodriguez, Giuseppe
    Zhang, Yunzi
    APPLIED NETWORK SCIENCE, 2022, 7 (01)
  • [23] Chained structure of directed graphs with applications to social and transportation networks
    Anna Concas
    Caterina Fenu
    Lothar Reichel
    Giuseppe Rodriguez
    Yunzi Zhang
    Applied Network Science, 7
  • [24] Cost Efficient Application Placement for Smart Public Transportation
    Guan, Xinjie
    Ma, Xinxin
    Wan, Xili
    Bai, Guangwei
    2018 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2018,
  • [25] On geometric structure of global roundings for graphs and range spaces
    Asano, T
    Katoh, N
    Tamaki, H
    Tokuyama, T
    ALGORITHM THEORY- SWAT 2004, 2004, 3111 : 455 - 467
  • [26] NONLINEAR COST NETWORK MODELS IN TRANSPORTATION ANALYSIS
    FLORIAN, M
    MATHEMATICAL PROGRAMMING STUDY, 1986, 26 : 167 - 196
  • [27] Poincare type inequalities for group measure spaces and related transportation cost inequalities
    Zeng, Qiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 3236 - 3264
  • [28] The Application of Multifunctional Structure in Space Transportation System
    Lv, Dianjun
    Wang, Xiaohui
    Zhu, Shusheng
    Qiu, Gongwang
    Zhan, Jingkun
    2017 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ASIA-PACIFIC (ITEC ASIA-PACIFIC), 2017, : 1097 - 1102
  • [29] Evolutionary transportation planning model: structure and application
    Levinson, David M.
    Transportation Research Record, 1995, (1493): : 64 - 73
  • [30] Total cost analysis: An alternative to benefit-cost analysis in evaluating transportation alternatives
    Patrick DeCorla- Souza
    Jerry Everett
    Brian Gardner
    Michael Culp
    Transportation, 1997, 24 : 107 - 123