Analysis on Laakso graphs with application to the structure of transportation cost spaces

被引:4
|
作者
Dilworth, S. J. [1 ]
Kutzarova, Denka [2 ,3 ]
Ostrovskii, Mikhail I. [4 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA
基金
美国国家科学基金会;
关键词
Analysis on Laakso graphs; Arens-Eells space; Diamond graphs; Earth mover distance; Kantorovich-Rubinstein distance; Laakso graphs; Lipschitz-free space; Transportation cost; Wasserstein distance; METRIC-SPACES; EMBEDDINGS;
D O I
10.1007/s11117-021-00821-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a continuation of our article in Dilworth et al. (Can J Math 72:774-804, 2020). We construct orthogonal bases of the cycle and cut spaces of the Laakso graph L-n. They are used to analyze projections from the edge space onto the cycle space and to obtain reasonably sharp estimates of the projection constant of Lip(0)(L-n), the space of Lipschitz functions on L-n. We deduce that the Banach-Mazur distance from TC(L-n), the transportation cost space of L-n, to l(1)(N) of the same dimension is at least (3n - 5)/8, which is the analogue of a result from [op. cit.] for the diamond graph D-n. We calculate the exact projection constants of Lip(0)(D-n,D-k), where D-n,D-k is the diamond graph of branching k. We also provide simple examples of finite metric spaces, transportation cost spaces on which contain l(infinity)(3) and l(infinity)(4) isometrically.
引用
收藏
页码:1403 / 1435
页数:33
相关论文
共 50 条