Isometric structure of transportation cost spaces on finite metric spaces

被引:0
|
作者
Sofiya Ostrovska
Mikhail I. Ostrovskii
机构
[1] Atilim University,Department of Mathematics
[2] St. John’s University,Department of Mathematics and Computer Science
关键词
Primary. 46B04; Secondary. 46B85;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to isometric Banach-space-theoretical structure of transportation cost (TC) spaces on finite metric spaces. The TC spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein spaces. A new notion of a roadmap pertinent to a transportation problem on a finite metric space has been introduced and used to simplify proofs for the results on representation of TC spaces as quotients of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} spaces on the edge set over the cycle space. A Tolstoi-type theorem for roadmaps is proved, and directed subgraphs of the canonical graphs, which are supports of maximal optimal roadmaps, are characterized. Possible obstacles for a TC space on a finite metric space X preventing them from containing subspaces isometric to ℓ∞n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty ^n$$\end{document} have been found in terms of the canonical graph of X. The fact that TC spaces on diamond graphs do not contain ℓ∞4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty ^4$$\end{document} isometrically has been derived. In addition, a short overview of known results on the isometric structure of TC spaces on finite metric spaces is presented.
引用
收藏
相关论文
共 50 条
  • [1] Isometric structure of transportation cost spaces on finite metric spaces
    Ostrovska, Sofiya
    Ostrovskii, Mikhail, I
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [2] Isometric embeddings of finite metric spaces
    Oblakova, A. I.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2016, 71 (01) : 1 - 6
  • [3] On the Structure of Discrete Metric Spaces Isometric to Circles
    Dress, Andreas W. M.
    Maehara, Hiroshi
    Pang, Sabrina Xing Mei
    Zeng, Zhenbing
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 83 - 94
  • [4] Isometric shifts and metric spaces
    Araujo, J
    Font, JJ
    MONATSHEFTE FUR MATHEMATIK, 2001, 134 (01): : 1 - 8
  • [5] Isometric model of metric spaces
    Simonov, Sergey
    2018 DAYS ON DIFFRACTION (DD), 2018, : 274 - 276
  • [6] Isometric Shifts and Metric Spaces
    Jesús Araujo
    Juan J. Font
    Monatshefte für Mathematik, 2001, 134 : 1 - 8
  • [7] Local structure of Gromov-Hausdorff space, and isometric embeddings of finite metric spaces into this space
    Iliadis, Stavros
    Ivanov, Alexander O.
    Tuzhilin, Alexey A.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 393 - 398
  • [8] Complementability of isometric copies of l1 in transportation cost spaces
    Ostrovska, Sofiya
    Ostrovskii, Mikhail I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [9] On isometric embeddings of separable metric spaces
    Iliadis, Stavros
    TOPOLOGY AND ITS APPLICATIONS, 2015, 179 : 91 - 98
  • [10] On the isometric isomorphism of probabilistic metric spaces
    Ming-xue L.
    Applied Mathematics and Mechanics, 2002, 23 (5) : 614 - 617