Isometric structure of transportation cost spaces on finite metric spaces

被引:0
|
作者
Sofiya Ostrovska
Mikhail I. Ostrovskii
机构
[1] Atilim University,Department of Mathematics
[2] St. John’s University,Department of Mathematics and Computer Science
关键词
Primary. 46B04; Secondary. 46B85;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to isometric Banach-space-theoretical structure of transportation cost (TC) spaces on finite metric spaces. The TC spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein spaces. A new notion of a roadmap pertinent to a transportation problem on a finite metric space has been introduced and used to simplify proofs for the results on representation of TC spaces as quotients of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} spaces on the edge set over the cycle space. A Tolstoi-type theorem for roadmaps is proved, and directed subgraphs of the canonical graphs, which are supports of maximal optimal roadmaps, are characterized. Possible obstacles for a TC space on a finite metric space X preventing them from containing subspaces isometric to ℓ∞n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty ^n$$\end{document} have been found in terms of the canonical graph of X. The fact that TC spaces on diamond graphs do not contain ℓ∞4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty ^4$$\end{document} isometrically has been derived. In addition, a short overview of known results on the isometric structure of TC spaces on finite metric spaces is presented.
引用
收藏
相关论文
共 50 条
  • [31] Lipschitz-free Spaces on Finite Metric Spaces
    Dilworth, Stephen J.
    Kutzarova, Denka
    Ostrovskii, Mikhail, I
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (03): : 774 - 804
  • [32] On the probability that finite spaces with random distances are metric spaces
    Mascioni, V
    DISCRETE MATHEMATICS, 2005, 300 (1-3) : 129 - 138
  • [33] Generalized Transportation Cost Spaces
    Ostrovska, Sofiya
    Ostrovskii, Mikhail I.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (06)
  • [34] Generalized Transportation Cost Spaces
    Sofiya Ostrovska
    Mikhail I. Ostrovskii
    Mediterranean Journal of Mathematics, 2019, 16
  • [35] Main Metric Invariants of Finite Metric Spaces
    Sosov, E. N.
    RUSSIAN MATHEMATICS, 2015, 59 (05) : 38 - 40
  • [36] ON METRIC COMPLEMENTS AND METRIC REGULARITY IN FINITE METRIC SPACES
    Oblaukhov, A. K.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2020, (49): : 35 - 45
  • [37] A NOTE ON ISOMETRIC METRIZATION OF PROBABILISTIC METRIC-SPACES
    FANG, JX
    CHINESE SCIENCE BULLETIN, 1991, 36 (18): : 1497 - 1500
  • [38] Optimal embedding of finite metric spaces into strictly convex spaces
    Gachkooban, Zahra
    Alizadeh, Rahim
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3307 - 3314
  • [39] Analysis on Laakso graphs with application to the structure of transportation cost spaces
    Dilworth, S. J.
    Kutzarova, Denka
    Ostrovskii, Mikhail I.
    POSITIVITY, 2021, 25 (04) : 1403 - 1435
  • [40] ISOMETRIC RIGIDITY OF WASSERSTEIN SPACES: THE GRAPH METRIC CASE
    Kiss, Gergely
    Titkos, Tamas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 4083 - 4097