Isometric structure of transportation cost spaces on finite metric spaces

被引:0
|
作者
Sofiya Ostrovska
Mikhail I. Ostrovskii
机构
[1] Atilim University,Department of Mathematics
[2] St. John’s University,Department of Mathematics and Computer Science
关键词
Primary. 46B04; Secondary. 46B85;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to isometric Banach-space-theoretical structure of transportation cost (TC) spaces on finite metric spaces. The TC spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein spaces. A new notion of a roadmap pertinent to a transportation problem on a finite metric space has been introduced and used to simplify proofs for the results on representation of TC spaces as quotients of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} spaces on the edge set over the cycle space. A Tolstoi-type theorem for roadmaps is proved, and directed subgraphs of the canonical graphs, which are supports of maximal optimal roadmaps, are characterized. Possible obstacles for a TC space on a finite metric space X preventing them from containing subspaces isometric to ℓ∞n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty ^n$$\end{document} have been found in terms of the canonical graph of X. The fact that TC spaces on diamond graphs do not contain ℓ∞4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty ^4$$\end{document} isometrically has been derived. In addition, a short overview of known results on the isometric structure of TC spaces on finite metric spaces is presented.
引用
收藏
相关论文
共 50 条
  • [21] Lipschitz and path isometric embeddings of metric spaces
    Le Donne, Enrico
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 47 - 66
  • [22] (Almost isometric) local retracts in metric spaces
    Quilis, Andres
    Zoca, Abraham Rueda
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (11)
  • [23] Almost isometric embedding between metric spaces
    Kojman, Menachem
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 155 (1) : 309 - 334
  • [24] Lipschitz and path isometric embeddings of metric spaces
    Enrico Le Donne
    Geometriae Dedicata, 2013, 166 : 47 - 66
  • [25] BETWEENNESS RELATION AND ISOMETRIC IMBEDDINGS OF METRIC SPACES
    Dovgoshei, A. A.
    Dordovskii, D. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (10) : 1556 - 1567
  • [26] Betweenness relation and isometric imbeddings of metric spaces
    A. A. Dovgoshei
    D. V. Dordovskii
    Ukrainian Mathematical Journal, 2009, 61 : 1556 - 1567
  • [27] On embeddings of finite metric spaces
    Sagi, Gabor
    Nyiri, David
    2015 IEEE 13th International Scientific Conference on Informatics, 2015, : 227 - 231
  • [28] Finite Homogeneous Metric Spaces
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (05) : 757 - 773
  • [29] Finite Homogeneous Metric Spaces
    V. N. Berestovskii
    Yu. G. Nikonorov
    Siberian Mathematical Journal, 2019, 60 : 757 - 773
  • [30] Embeddings of locally finite metric spaces into Banach spaces
    Baudier, F.
    Lancien, G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (03) : 1029 - 1033