An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness

被引:6
|
作者
Xu, Cong [1 ]
Li, Zheng [2 ]
Xue, Yuan [3 ]
Zhang, Lijun [4 ]
Wang, Ming [2 ]
机构
[1] Vertex Pharmaceut, Boston, MA USA
[2] Penn State Hershey Med Ctr, Coll Med, Div Biostat & Bioinformat, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[3] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
[4] Penn State Hershey Med Ctr, Dept Biochem & Mol Biol, Inst Personalized Med, Hershey, PA USA
关键词
Dropout missingness; inverse probability weight; generalized estimating equations; missing at random; model selection; quasi-likelihood; R; GENERALIZED ESTIMATING EQUATIONS; CLUSTER-RANDOMIZED-TRIALS; DOUBLY ROBUST; INFORMATION CRITERION; LINEAR-MODELS; IMPUTATION; GEE; INFERENCE; BINARY;
D O I
10.1080/03610918.2018.1468457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal studies. This paper describes the core features of an R package wgeesel, which implements marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust GEE) for longitudinal data with dropouts under the assumption of missing at random. More importantly, this package comprehensively provide existing information criteria for WGEE model selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations are presented to illustrate and validate our package.
引用
收藏
页码:2812 / 2829
页数:18
相关论文
共 50 条
  • [41] Multiple-Model Multiple Imputation for Longitudinal Count Data to Address Uncertainty in Missingness Mechanism
    Farahani, E. Jalali
    Baghfalaki, T.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 84 - 96
  • [42] gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework
    Hofner, Benjamin
    Mayr, Andreas
    Schmid, Matthias
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 74 (01): : 1 - 31
  • [43] modelBuildR: an R package for model building and feature selection with erroneous classifications
    Knoll, Maximilian
    Furkel, Jennifer
    Debus, Juergen
    Abdollahi, Amir
    PEERJ, 2021, 9
  • [44] mplot: An R Package for Graphical Model Stability and Variable Selection Procedures
    Tarr, Garth
    Muller, Samuel
    Welsh, Alan H.
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 83 (09): : 1 - 28
  • [45] A hidden Markov model for informative dropout in longitudinal response data with crisis states
    Spagnoli, Alessandra
    Henderson, Robin
    Boys, Richard J.
    Houwing-Duistermaat, Jeanine J.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (07) : 730 - 738
  • [46] Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
    Roy, J
    BIOMETRICS, 2003, 59 (04) : 829 - 836
  • [47] Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data
    Ryoo, Ji Hoon
    Long, Jeffrey D.
    Welch, Greg W.
    Reynolds, Arthur
    Swearer, Susan M.
    FRONTIERS IN PSYCHOLOGY, 2017, 8
  • [48] TransModel: An R Package for Linear Transformation Model with Censored Data
    Zhou, Jie
    Zhang, Jiajia
    Lu, Wenbin
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 101 (09):
  • [49] A LATENT FACTOR MODEL FOR SPATIAL DATA WITH INFORMATIVE MISSINGNESS
    Reich, Brian J.
    Bandyopadhyay, Dipankar
    ANNALS OF APPLIED STATISTICS, 2010, 4 (01): : 439 - 459
  • [50] A Nonparametric Spatial Model for Periodontal Data With Nonrandom Missingness
    Reich, Brian J.
    Bandyopadhyay, Dipankar
    Bondell, Howard D.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 820 - 831