An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness

被引:6
|
作者
Xu, Cong [1 ]
Li, Zheng [2 ]
Xue, Yuan [3 ]
Zhang, Lijun [4 ]
Wang, Ming [2 ]
机构
[1] Vertex Pharmaceut, Boston, MA USA
[2] Penn State Hershey Med Ctr, Coll Med, Div Biostat & Bioinformat, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[3] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
[4] Penn State Hershey Med Ctr, Dept Biochem & Mol Biol, Inst Personalized Med, Hershey, PA USA
关键词
Dropout missingness; inverse probability weight; generalized estimating equations; missing at random; model selection; quasi-likelihood; R; GENERALIZED ESTIMATING EQUATIONS; CLUSTER-RANDOMIZED-TRIALS; DOUBLY ROBUST; INFORMATION CRITERION; LINEAR-MODELS; IMPUTATION; GEE; INFERENCE; BINARY;
D O I
10.1080/03610918.2018.1468457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal studies. This paper describes the core features of an R package wgeesel, which implements marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust GEE) for longitudinal data with dropouts under the assumption of missing at random. More importantly, this package comprehensively provide existing information criteria for WGEE model selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations are presented to illustrate and validate our package.
引用
收藏
页码:2812 / 2829
页数:18
相关论文
共 50 条
  • [21] A bidimensional finite mixture model for longitudinal data subject to dropout
    Spagnoli, Alessandra
    Marino, Maria Francesca
    Alfo, Marco
    STATISTICS IN MEDICINE, 2018, 37 (20) : 2998 - 3011
  • [22] Modeling Longitudinal Obesity Data with Intermittent Missingness Using a New Latent Variable Model
    Qin, Li
    Weissfeld, Lisa
    Marcus, Marsha D.
    Levine, Michele D.
    Dai, Feng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (06) : 2018 - 2031
  • [23] Skew-mixed effects model for multivariate longitudinal data with categorical outcomes and missingness
    Mahabadi, S. Eftekhari
    Jafari, E. Rahimi
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (12) : 2182 - 2201
  • [24] Mixed Hidden Markov Model for Heterogeneous Longitudinal Data with Missingness and Errors in the Outcome Variable
    Dedieu, Dominique
    Delpierre, Cyrille
    Gadat, Sebastien
    Lang, Thierry
    Lepage, Benoit
    Savy, Nicolas
    JOURNAL OF THE SFDS, 2014, 155 (01): : 73 - 98
  • [25] RealVAMS: An R Package for Fitting a Multivariate Value-added Model (VAM)
    Broatch, Jennifer
    Green, Jennifer
    Karl, Andrew
    R JOURNAL, 2018, 10 (01): : 22 - 30
  • [26] GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs
    MacDonald, Blake
    Ranjan, Pritam
    Chipman, Hugh
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (12): : 1 - 23
  • [27] The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model Fitting with Big Data in R
    Zeng, Yaohui
    Breheny, Patrick
    R JOURNAL, 2020, 12 (02): : 6 - 19
  • [28] Model-Assisted Regression Estimators for Longitudinal Data with Nonignorable Dropout
    Wang, Lei
    Qi, Cuicui
    Shao, Jun
    INTERNATIONAL STATISTICAL REVIEW, 2019, 87 : S121 - S138
  • [29] A hidden Markov model for continuous longitudinal data with missing responses and dropout
    Pandolfi, Silvia
    Bartolucci, Francesco
    Pennoni, Fulvia
    BIOMETRICAL JOURNAL, 2023, 65 (05)
  • [30] A Bayesian model for longitudinal count data with non-ignorable dropout
    Kaciroti, Niko A.
    Raghunathan, Trivellore E.
    Schork, M. Anthony
    Clark, Noreen M.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 521 - 534