An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness

被引:6
|
作者
Xu, Cong [1 ]
Li, Zheng [2 ]
Xue, Yuan [3 ]
Zhang, Lijun [4 ]
Wang, Ming [2 ]
机构
[1] Vertex Pharmaceut, Boston, MA USA
[2] Penn State Hershey Med Ctr, Coll Med, Div Biostat & Bioinformat, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[3] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
[4] Penn State Hershey Med Ctr, Dept Biochem & Mol Biol, Inst Personalized Med, Hershey, PA USA
关键词
Dropout missingness; inverse probability weight; generalized estimating equations; missing at random; model selection; quasi-likelihood; R; GENERALIZED ESTIMATING EQUATIONS; CLUSTER-RANDOMIZED-TRIALS; DOUBLY ROBUST; INFORMATION CRITERION; LINEAR-MODELS; IMPUTATION; GEE; INFERENCE; BINARY;
D O I
10.1080/03610918.2018.1468457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal studies. This paper describes the core features of an R package wgeesel, which implements marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust GEE) for longitudinal data with dropouts under the assumption of missing at random. More importantly, this package comprehensively provide existing information criteria for WGEE model selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations are presented to illustrate and validate our package.
引用
收藏
页码:2812 / 2829
页数:18
相关论文
共 50 条
  • [31] Bayesian Model Selection for Longitudinal Count Data
    Ariyo, Oludare
    Lesaffre, Emmanuel
    Verbeke, Geert
    Quintero, Adrian
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (02): : 516 - 547
  • [32] Bayesian Model Selection for Longitudinal Count Data
    Oludare Ariyo
    Emmanuel Lesaffre
    Geert Verbeke
    Adrian Quintero
    Sankhya B, 2022, 84 : 516 - 547
  • [33] A Bayesian Latent Variable Selection Model for Nonignorable Missingness
    Du, Han
    Enders, Craig
    Keller, Brian Tinnell
    Bradbury, Thomas N.
    Karney, Benjamin R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (2-3) : 478 - 512
  • [34] The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC
    Rizopoulos, Dimitris
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (07): : 1 - 46
  • [35] RESAMPLING METHODS FOR MODEL FITTING AND MODEL SELECTION
    Babu, G. Jogesh
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1177 - 1186
  • [36] A non-parametric model to address overdispersed count response in a longitudinal data setting with missingness
    Zhang, Hui
    He, Hua
    Lu, Naiji
    Zhu, Liang
    Zhang, Bo
    Zhang, Zhiwei
    Tang, Li
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) : 1461 - 1475
  • [37] Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling
    Bhuyan, Prajamitra
    COMPUTATIONAL STATISTICS, 2019, 34 (04) : 1693 - 1710
  • [38] Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling
    Prajamitra Bhuyan
    Computational Statistics, 2019, 34 : 1693 - 1710
  • [39] ezGeno: an automatic model selection package for genomic data analysis
    Lin, Jun-Liang
    Hsieh, Tsung-Ting
    Tung, Yi-An
    Chen, Xuan-Jun
    Hsiao, Yu-Chun
    Yang, Chia-Lin
    Liu, Tyng-Luh
    Chen, Chien-Yu
    BIOINFORMATICS, 2022, 38 (01) : 30 - 37
  • [40] Analysis of longitudinal ordinal data using semi-parametric mixed model under missingness
    Rana, Subrata
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5631 - 5642