mplot: An R Package for Graphical Model Stability and Variable Selection Procedures

被引:7
|
作者
Tarr, Garth [1 ]
Muller, Samuel [1 ]
Welsh, Alan H. [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 2601, Australia
来源
JOURNAL OF STATISTICAL SOFTWARE | 2018年 / 83卷 / 09期
基金
澳大利亚研究理事会;
关键词
model selection; variable selection; linear models; mixed models; generalized linear models; fence; R; REGRESSION;
D O I
10.18637/jss.v083.i09
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The mplot package provides an easy to use implementation of model stability and variable inclusion plots (Muller andWelsh 2010; Murray, Heritier, and Muller 2013) as well as the adaptive fence (Jiang, Rao, Gu, and Nguyen 2008; Jiang, Nguyen, and Rao 2009) for linear and generalized linear models. We provide a number of innovations on the standard procedures and address many practical implementation issues including the addition of redundant variables, interactive visualizations and the approximation of logistic models with linear models. An option is provided that combines our bootstrap approach with glmnet for higher dimensional models. The plots and graphical user interface leverage state of the art web technologies to facilitate interaction with the results. The speed of implementation comes from the leaps package and cross-platform multicore support.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework
    Hofner, Benjamin
    Mayr, Andreas
    Schmid, Matthias
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2016, 74 (01): : 1 - 31
  • [2] The MIAmaxent R package: Variable transformation and model selection for species distribution models
    Vollering, Julien
    Halvorsen, Rune
    Mazzoni, Sabrina
    [J]. ECOLOGY AND EVOLUTION, 2019, 9 (21): : 12051 - 12068
  • [3] Bayesian Ising Graphical Model for Variable Selection
    Fang, Zaili
    Kim, Inyoung
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (02) : 589 - 605
  • [4] FWDselect: An R Package for Variable Selection in Regression Models
    Sestelo, Marta
    Villanueva, Nora M.
    Meira-Machado, Luis
    Roca-Pardinas, Javier
    [J]. R JOURNAL, 2016, 8 (01): : 132 - 148
  • [5] clustvarsel: A Package Implementing Variable Selection for Gaussian Model-Based Clustering in R
    Scrucca, Luca
    Raftery, Adrian E.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2018, 84 (01): : 1 - 28
  • [6] Meta-Statistics for Variable Selection: The R Package BioMark
    Wehrens, Ron
    Franceschi, Pietro
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 51 (10): : 1 - 18
  • [7] VSURF: An R Package for Variable Selection Using Random Forests
    Genuer, Robin
    Poggi, Jean-Michel
    Tuleau-Malot, Christine
    [J]. R JOURNAL, 2015, 7 (02): : 19 - 33
  • [8] Robust Bayesian model selection for variable clustering with the Gaussian graphical model
    Daniel Andrade
    Akiko Takeda
    Kenji Fukumizu
    [J]. Statistics and Computing, 2020, 30 : 351 - 376
  • [9] Robust Bayesian model selection for variable clustering with the Gaussian graphical model
    Andrade, Daniel
    Takeda, Akiko
    Fukumizu, Kenji
    [J]. STATISTICS AND COMPUTING, 2020, 30 (02) : 351 - 376
  • [10] High-Dimensional Graphical Model Search with the gRapHD R Package
    Abreu, Gabriel C. G.
    Edwards, David
    Labouriau, Rodrigo
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 37 (01): : 1 - 18