Robust Probability Density Forecasts of Yearly Peak Load using Non-Parametric Model

被引:0
|
作者
Bichpuriya, Yogesh K. [1 ]
Soman, S. A. [2 ]
Subramanyam, A. [3 ]
机构
[1] Tata Consultancy Serv Ltd, Pune 411013, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
ACE; peak load; probability density forecast; REGRESSION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose an approach for robust probability density forecast of yearly peak load. The probability density forecast is robust against influential observations and error in econometric projections. By using a method akin to jackknifing, we obtain multiple instances of the yearly peak load per scenario of explanatory variables. The density forecast of the YPL is obtained using kernel density estimation. There can be many parametric models for forecasting trend. We propose the use of alternating condition expectation (ACE) to discover trend without making any assumption on its functional form. We compare the ACE model and parametric trend models e.g., linear and exponential with the explanatory variables factored in them. Proposed approach is illustrated with real life data of an electricity distribution company.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)
    Chivata Cardenas, Ibsen
    INGENIERIA E INVESTIGACION, 2008, 28 (02): : 22 - 29
  • [42] Automatic topography of high-dimensional data sets by non-parametric density peak clustering
    D'Errico, Maria
    Facco, Elena
    Laio, Alessandro
    Rodriguez, Alex
    INFORMATION SCIENCES, 2021, 560 : 476 - 492
  • [43] A non-parametric estimator for stochastic volatility density
    Ouamaliche, Soufiane
    Sayah, Awatef
    INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2021, 11 (04) : 349 - 367
  • [44] A fast non-parametric density estimation algorithm
    Egecioglu, O
    Srinivasan, A
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (10): : 755 - 763
  • [45] NON-PARAMETRIC INTERPRETATION OF DENSITY AND ITS DERIVATIVES
    BOSQ, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (21): : 1010 - &
  • [46] A geometric approach to non-parametric density estimation
    Browne, Matthew
    PATTERN RECOGNITION, 2007, 40 (01) : 134 - 140
  • [47] Colorectal MRI image registration using phase mutual information from non-parametric probability density function estimator
    Zhang, Weiwei
    Joshi, Niranjan
    Brady, Michael
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1103 - 1106
  • [48] Robust Mixed Noise Removal with Non-parametric Bayesian Sparse Outlier Model
    Zhuang, Peixian
    Wang, Wei
    Zeng, Delu
    Ding, Xinghao
    2014 IEEE 16TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2014,
  • [49] Fast Non-Parametric Conditional Density Estimation using Moment Trees
    Hinder, Fabian
    Vaquet, Valerie
    Brinkrolf, Johannes
    Hammer, Barbara
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [50] Uncertain Trajectory Prediction Method Using Non-parametric Density Estimation
    Cheng Y.
    Chi R.-H.
    Huang S.-B.
    Lv T.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (04): : 787 - 798