Robust Probability Density Forecasts of Yearly Peak Load using Non-Parametric Model

被引:0
|
作者
Bichpuriya, Yogesh K. [1 ]
Soman, S. A. [2 ]
Subramanyam, A. [3 ]
机构
[1] Tata Consultancy Serv Ltd, Pune 411013, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
ACE; peak load; probability density forecast; REGRESSION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose an approach for robust probability density forecast of yearly peak load. The probability density forecast is robust against influential observations and error in econometric projections. By using a method akin to jackknifing, we obtain multiple instances of the yearly peak load per scenario of explanatory variables. The density forecast of the YPL is obtained using kernel density estimation. There can be many parametric models for forecasting trend. We propose the use of alternating condition expectation (ACE) to discover trend without making any assumption on its functional form. We compare the ACE model and parametric trend models e.g., linear and exponential with the explanatory variables factored in them. Proposed approach is illustrated with real life data of an electricity distribution company.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Detection of Periodic Problems using Non-Parametric Density Estimation
    Sarkan, Mehmet Onur
    Cataltepe, Zehra
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [32] A Non-Parametric Method to Determine Basic Probability Assignment Based on Kernel Density Estimation
    Qin, Bowen
    Xiao, Fuyuan
    IEEE ACCESS, 2018, 6 : 73509 - 73519
  • [33] Is non-parametric hypothesis testing model robust for statistical fault localization?
    Zhang, Zhenyu
    Chan, W. K.
    Tse, T. H.
    Hu, Peifeng
    Wang, Xinming
    INFORMATION AND SOFTWARE TECHNOLOGY, 2009, 51 (11) : 1573 - 1585
  • [34] Seasonal forecasts or Indian summer monsoon rainfall using local polynomial based non-parametric regression model
    Rohilla, Anil Kumar
    Rajeevan, M.
    Pai, D. S.
    MAUSAM, 2008, 59 (01): : 77 - 86
  • [35] A NON-PARAMETRIC MODEL FOR BALLISTOCARDIOGRAPHY
    Yao, Y.
    Schiefer, J.
    van Waasen, S.
    Schiek, M.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 69 - 72
  • [36] Using Non-parametric Count Model for Credit Scoring
    Sami Mestiri
    Abdeljelil Farhat
    Journal of Quantitative Economics, 2021, 19 : 39 - 49
  • [37] Using Non-parametric Count Model for Credit Scoring
    Mestiri, Sami
    Farhat, Abdeljelil
    JOURNAL OF QUANTITATIVE ECONOMICS, 2021, 19 (01) : 39 - 49
  • [38] Non-parametric probabilistic load flow using Gaussian process learning
    Pareek, Parikshit
    Wang, Chuan
    Nguyen, Hung D.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 424
  • [39] Seaport performance analysis using robust non-parametric efficiency estimators
    Simoes, P.
    Marques, R. C.
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2010, 33 (05) : 435 - 451
  • [40] Non-parametric reconstructions of cosmic curvature: current constraints and forecasts
    Mariana L. S. Dias
    Antônio F. B. da Cunha
    Carlos A. P. Bengaly
    Rodrigo S. Gonçalves
    Jonathan Morais
    The European Physical Journal C, 85 (4):