Robust Probability Density Forecasts of Yearly Peak Load using Non-Parametric Model

被引:0
|
作者
Bichpuriya, Yogesh K. [1 ]
Soman, S. A. [2 ]
Subramanyam, A. [3 ]
机构
[1] Tata Consultancy Serv Ltd, Pune 411013, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
ACE; peak load; probability density forecast; REGRESSION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose an approach for robust probability density forecast of yearly peak load. The probability density forecast is robust against influential observations and error in econometric projections. By using a method akin to jackknifing, we obtain multiple instances of the yearly peak load per scenario of explanatory variables. The density forecast of the YPL is obtained using kernel density estimation. There can be many parametric models for forecasting trend. We propose the use of alternating condition expectation (ACE) to discover trend without making any assumption on its functional form. We compare the ACE model and parametric trend models e.g., linear and exponential with the explanatory variables factored in them. Proposed approach is illustrated with real life data of an electricity distribution company.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] When are Non-Parametric Methods Robust?
    Bhattacharjee, Robi
    Chaudhuri, Kamalika
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [22] Biological parametric mapping with robust and non-parametric statistics
    Yang, Xue
    Beason-Held, Lori
    Resnick, Susan M.
    Landman, Bennett A.
    NEUROIMAGE, 2011, 57 (02) : 423 - 430
  • [23] NON-PARAMETRIC ROUGHNESS PENALTY FOR PROBABILITY DENSITIES
    GOOD, IJ
    NATURE-PHYSICAL SCIENCE, 1971, 229 (01): : 29 - &
  • [24] Non-parametric Estimation of Integral Probability Metrics
    Sriperumbudur, Bharath K.
    Fukumizu, Kenji
    Gretton, Arthur
    Schoelkopf, Bernhard
    Lanckriet, Gert R. G.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1428 - 1432
  • [25] Riemannian geometry on non-parametric probability space
    Combe-Nencka, H.
    Combe, Ph.
    NEURAL NETWORK WORLD, 2006, 16 (06) : 459 - 473
  • [26] Parametric and Non-parametric Estimates of Military Expenditure Probability Distribution
    Neubauer, Jiri
    Tejkal, Martin
    Odehnal, Jakub
    Ambler, Tereza
    38TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2020), 2020, : 396 - 402
  • [27] Non-parametric inference for density modes
    Genovese, Christopher R.
    Perone-Pacifico, Marco
    Verdinelli, Isabella
    Wasserman, Larry
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 99 - 126
  • [28] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [29] Automatic robust background modeling using multivariate non-parametric kernel density estimation for visual surveillance
    Tavakkoli, A
    Nicolescu, M
    Bebis, G
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 363 - 370
  • [30] Non-parametric approach to ICA using kernel density estimation
    Sengupta, K
    Burman, P
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 749 - 752