Non-parametric inference for density modes

被引:30
|
作者
Genovese, Christopher R. [1 ]
Perone-Pacifico, Marco [2 ]
Verdinelli, Isabella [1 ]
Wasserman, Larry [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Rome, Rome, Italy
基金
美国国家科学基金会;
关键词
Bootstrap; Density estimation; Modes; Persistence; KERNEL; MULTIMODALITY; ESTIMATORS; TESTS; ASYMPTOTICS; CONSISTENCY; UNIFORM; SPACE;
D O I
10.1111/rssb.12111
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive non-parametric confidence intervals for the eigenvalues of the Hessian at modes of a density estimate. This provides information about the strength and shape of modes and can also be used as a significance test. We use a data splitting approach in which potential modes are identified by using the first half of the data and inference is done with the second half of the data. To obtain valid confidence sets for the eigenvalues, we use a bootstrap based on an elementary symmetric polynomial transformation. This leads to valid bootstrap confidence sets regardless of any multiplicities in the eigenvalues. We also suggest a new method for bandwidth selection, namely choosing the bandwidth to maximize the number of significant modes. We show by example that this method works well. Even when the true distribution is singular, and hence does not have a density (in which case cross-validation chooses a zero bandwidth), our method chooses a reasonable bandwidth.
引用
收藏
页码:99 / 126
页数:28
相关论文
共 50 条
  • [1] Non-parametric inference on the number of equilibria
    Kasy, Maximilian
    [J]. ECONOMETRICS JOURNAL, 2015, 18 (01): : 1 - 39
  • [2] Statistical inference in the non-parametric case
    Scheffe, H
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1943, 14 : 305 - 332
  • [3] Non-parametric Bayesian inference for continuous density hidden Markov mixture model
    Bathaee, Najmeh
    Sheikhzadeh, Hamid
    [J]. STATISTICAL METHODOLOGY, 2016, 33 : 256 - 275
  • [4] Non-parametric inference for balanced randomization designs
    Rukhin, Andrew L.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 967 - 984
  • [5] Non-parametric Inference and Coordination for Distributed Robotics
    Julian, Brian J.
    Angermann, Michael
    Rus, Daniela
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2787 - 2794
  • [6] Non-parametric inference on calibration of predicted risks
    Sadatsafavi, Mohsen
    Petkau, John
    [J]. STATISTICS IN MEDICINE, 2024, 43 (18) : 3524 - 3538
  • [7] NON-PARAMETRIC STATISTICAL INFERENCE FOR THE SURVIVAL EXPERIMENTS
    Ramadurai, M.
    Basha, M. A. Ghouse
    [J]. JP JOURNAL OF BIOSTATISTICS, 2021, 18 (03) : 379 - 394
  • [8] Parametric and non-parametric gradient matching for network inference: a comparison
    Dony, Leander
    He, Fei
    Stumpf, Michael P. H.
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)
  • [9] Non-parametric Inference Adaptive to Intrinsic Dimension
    Khosravi, Khashayar
    Lewis, Greg
    Syrgkanis, Vasilis
    [J]. CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 177, 2022, 177
  • [10] A Bias Bound Approach to Non-parametric Inference
    Schennach, Susanne M.
    [J]. REVIEW OF ECONOMIC STUDIES, 2020, 87 (05): : 2439 - 2472