A non-parametric estimator for stochastic volatility density

被引:0
|
作者
Ouamaliche, Soufiane [1 ]
Sayah, Awatef [1 ]
机构
[1] Mohammed V Univ, Fac Sci, Lab Math Comp & Applicat Informat Secur, BP1014RP, Rabat, Morocco
关键词
non-parametric estimation; kernel smoothing; kernel regression; kernel density estimation; convolution structure; stochastic volatility; Monte Carlo simulations; BANDWIDTH SELECTION; SIMULATION; SCHEMES;
D O I
10.1504/IJCEE.2021.118476
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper aims at improving the accuracy of stochastic volatility density estimation in a high frequency setting using a simple procedure involving a combination of kernel smoothing methods namely, kernel regression and kernel density estimation. The employed data, which are 30 years worth of hourly observations, are simulated through a constant elasticity of variance-stochastic volatility (CEV-SV) model, namely the Heston model, calibrated to fit the S&P 500 Index, in the form of a two-dimensional diffusion process (Y-t, V-t) such that only (Y-t) is an observable coordinate. Polynomials of different degrees are then adjusted using weighted least squares to filter the observations of the variance coordinate (V-t) from a convolution structure before applying a straightforward kernel density estimation. The obtained estimates did well when compared to previous results as they have displayed a certain improvement, linked to the degree of the fitted polynomial, by reducing the value of the mean integrated squared error (MISE) criterion computed with respect to a benchmark density suggested in the literature.
引用
收藏
页码:349 / 367
页数:19
相关论文
共 50 条
  • [1] BSS algorithm by diffusion mixing non-parametric density estimator
    Wang, Fasong
    Li, Rui
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2012, 15 (01) : 13 - 19
  • [2] Non-parametric estimation of historical volatility
    Randal, JA
    Thomson, PJ
    Lally, MT
    [J]. QUANTITATIVE FINANCE, 2004, 4 (04) : 427 - 440
  • [3] Non-parametric Estimator for Conditional Mode with Parametric Features
    Wang, Tao
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2024, 86 (01) : 44 - 73
  • [4] Non-stationary non-parametric volatility model
    Han, Heejoon
    Zhang, Shen
    [J]. ECONOMETRICS JOURNAL, 2012, 15 (02): : 204 - 225
  • [5] Non-parametric monitoring of stochastic changes
    Burrell, A
    Papantoni-Kazakos, P
    [J]. 8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS, AND INFORMATICS, VOL XVI, PROCEEDINGS, 2004, : 126 - 130
  • [6] Non-Parametric Contextual Stochastic Search
    Abdolmaleki, Abbas
    Lau, Nuno
    Reis, Luis Paulo
    Neumann, Gerhard
    [J]. 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 2643 - 2648
  • [7] Novelty detection employing an L2 optimal non-parametric density estimator
    He, C
    Girolami, M
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (12) : 1389 - 1397
  • [8] Making a non-parametric density estimator more attractive, and more accurate, by data perturbation
    Doosti, Hassan
    Hall, Peter
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (02) : 445 - 462
  • [9] A new non-parametric estimator for instant system availability
    Huang, Kai
    Mi, Jie
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 18 - 29
  • [10] Non-parametric pricing of long-dated volatility derivatives under stochastic interest rates
    Joshi, Mark
    Ranasinghe, Navin
    [J]. QUANTITATIVE FINANCE, 2016, 16 (07) : 997 - 1008