The refined topological vertex

被引:341
|
作者
Iqbal, Amer [1 ]
Kozcaz, Can [2 ]
Vafa, Cumrun [3 ,4 ]
机构
[1] DHA, Dept Phys, LUMS Sch Sci & Engn, Sector U, Lahore, Pakistan
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
来源
关键词
Supersymmetric gauge theory; Topological Strings; STRINGS;
D O I
10.1088/1126-6708/2009/10/069
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov. The refined vertex is also expected to be related to Khovanov knot invariants.
引用
收藏
页数:58
相关论文
共 50 条
  • [41] Topological vertex/anti-vertex and supergroup gauge theory
    Kimura, Taro
    Sugimoto, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [42] Fermionic gluing principle of the topological vertex
    Deng, Fusheng
    Zhou, Jian
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [43] Nontorus link from topological vertex
    Awata, Hidetoshi
    Kanno, Hiroaki
    Mironov, Andrei
    Morozov, Alexei
    Morozov, Andrey
    PHYSICAL REVIEW D, 2018, 98 (04)
  • [44] The topological dimension of limits of vertex replacements
    Previte, Michelle
    Yang, Shun-Hsiang
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (12) : 2013 - 2025
  • [45] Refined open topological strings revisited
    Cheng, Shi
    Sulkowski, Piotr
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [46] Quantum geometry of refined topological strings
    Aganagic, Mina
    Cheng, Miranda C. N.
    Dijkgraaf, Robbert
    Krefl, Daniel
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):
  • [47] Fermionic gluing principle of the topological vertex
    Fusheng Deng
    Jian Zhou
    Journal of High Energy Physics, 2012
  • [48] On fermionic representation of the framed topological vertex
    Fusheng Deng
    Jian Zhou
    Journal of High Energy Physics, 2015, 2015 : 1 - 22
  • [49] On fermionic representation of the framed topological vertex
    Deng, Fusheng
    Zhou, Jian
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 22
  • [50] Topological Structures on Vertex Set of Digraphs
    Lalithambigai, K.
    Gnanachandra, P.
    BAGHDAD SCIENCE JOURNAL, 2023, 20 (01) : 350 - 358