Topological vertex/anti-vertex and supergroup gauge theory

被引:10
|
作者
Kimura, Taro [1 ]
Sugimoto, Yuji [2 ,3 ]
机构
[1] Univ Bourgogne Franche Comte, UMR 5584, CNRS, Inst Math Bourgogne, F-21078 Dijon, France
[2] Univ Sci & Technol China, NSFC SFTP Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
关键词
D-branes; String Duality; Supersymmetric Gauge Theory; Topological Strings; QUIVER VARIETIES;
D O I
10.1007/JHEP04(2020)081
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a new vertex formalism, called anti-refined topological vertex (anti-vertex for short), to compute the generalized topological string amplitude, which gives rise to the supergroup gauge theory partition function. We show the one-to-many correspondence between the gauge theory and the Calabi-Yau geometry, which is peculiar to the supergroup theory, and the relation between the ordinary vertex formalism and the vertex/anti-vertex formalism through the analytic continuation.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Anti-Vertex Covering and Its Characterizations on Intuitionistic AntiFuzzy Graph
    Vijesh, V. V.
    Muthuraj, R.
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 204 - 213
  • [2] A mathematical theory of the topological vertex
    Li, Jun
    Liu, Chiu-Chu Melissa
    Liu, Kefeng
    Zhou, Jian
    GEOMETRY & TOPOLOGY, 2009, 13 : 527 - 621
  • [3] The topological vertex
    Aganagic, M
    Klemm, A
    Mariño, M
    Vafa, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) : 425 - 478
  • [4] The Topological Vertex
    Mina Aganagic
    Albrecht Klemm
    Marcos Mariño
    Cumrun Vafa
    Communications in Mathematical Physics, 2005, 254 : 425 - 478
  • [5] The refined topological vertex
    Iqbal, Amer
    Kozcaz, Can
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [6] The orbifold topological vertex
    Bryan, Jim
    Cadman, Charles
    Young, Ben
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 531 - 595
  • [7] An elliptic topological vertex
    Foda, Omar
    Zhu, Rui-Dong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (46)
  • [8] Lectures on the topological vertex
    Marino, M.
    ENUMERATIVE INVARIANTS IN ALGEBRAIC GEOMETRY AND STRING THEORY, 2008, 1947 : 49 - 104
  • [9] Vertex stability and topological transitions in vertex models of foams and epithelia
    Meryl A. Spencer
    Zahera Jabeen
    David K. Lubensky
    The European Physical Journal E, 2017, 40
  • [10] Vertex stability and topological transitions in vertex models of foams and epithelia
    Spencer, Meryl A.
    Jabeen, Zahera
    Lubensky, David K.
    EUROPEAN PHYSICAL JOURNAL E, 2017, 40 (01):