We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov. The refined vertex is also expected to be related to Khovanov knot invariants.
机构:
Univ Melbourne, Math & Stat, Parkville, Vic 3010, AustraliaUniv Melbourne, Math & Stat, Parkville, Vic 3010, Australia
Foda, Omar
Wu, Jian-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Math & Stat, Minglun St, Kaifeng City, Henan, Peoples R China
Inst Theoret Phys & Math, 3rd Shangdi St, Beijing, Peoples R ChinaUniv Melbourne, Math & Stat, Parkville, Vic 3010, Australia
机构:
Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Gukov, Sergei
Iqbal, Amer
论文数: 0引用数: 0
h-index: 0
机构:
DHA, LUMS Sch Sci & Engn, Dept Phys, Lahore, PakistanUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Iqbal, Amer
Kozcaz, Can
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Phys, Seattle, WA 98195 USAUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Kozcaz, Can
Vafa, Cumrun
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USAUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA