The refined topological vertex

被引:341
|
作者
Iqbal, Amer [1 ]
Kozcaz, Can [2 ]
Vafa, Cumrun [3 ,4 ]
机构
[1] DHA, Dept Phys, LUMS Sch Sci & Engn, Sector U, Lahore, Pakistan
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
来源
关键词
Supersymmetric gauge theory; Topological Strings; STRINGS;
D O I
10.1088/1126-6708/2009/10/069
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov. The refined vertex is also expected to be related to Khovanov knot invariants.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] A Macdonald refined topological vertex
    Foda, Omar
    Wu, Jian-Feng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (29)
  • [2] Refined topological vertex and instanton counting
    Taki, Masato
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03):
  • [3] Link Homologies and the Refined Topological Vertex
    Sergei Gukov
    Amer Iqbal
    Can Kozçaz
    Cumrun Vafa
    Communications in Mathematical Physics, 2010, 298 : 757 - 785
  • [4] Link Homologies and the Refined Topological Vertex
    Gukov, Sergei
    Iqbal, Amer
    Kozcaz, Can
    Vafa, Cumrun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (03) : 757 - 785
  • [5] Refined topological vertex with ON-planes
    Sung-Soo Kim
    Xing-Yue Wei
    Journal of High Energy Physics, 2022
  • [6] Refined topological vertex with ON-planes
    Kim, Sung-Soo
    Wei, Xing-Yue
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [7] Quantum algebraic approach to refined topological vertex
    H. Awata
    B. Feigin
    J. Shiraishi
    Journal of High Energy Physics, 2012
  • [8] Quantum algebraic approach to refined topological vertex
    Awata, H.
    Feigin, B.
    Shiraishi, J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [9] Changing the preferred direction of the refined topological vertex
    Awata, Hidetoshi
    Kanno, Hiroaki
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 64 : 91 - 110
  • [10] Operator Product Formulas in the Algebraic Approach of the Refined Topological Vertex
    Cai Li-Qiang
    Wang Li-Fang
    Wu Ke
    Yang Jie
    CHINESE PHYSICS LETTERS, 2013, 30 (02)