The refined topological vertex

被引:341
|
作者
Iqbal, Amer [1 ]
Kozcaz, Can [2 ]
Vafa, Cumrun [3 ,4 ]
机构
[1] DHA, Dept Phys, LUMS Sch Sci & Engn, Sector U, Lahore, Pakistan
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
来源
关键词
Supersymmetric gauge theory; Topological Strings; STRINGS;
D O I
10.1088/1126-6708/2009/10/069
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov. The refined vertex is also expected to be related to Khovanov knot invariants.
引用
收藏
页数:58
相关论文
共 50 条
  • [21] Lectures on the topological vertex
    Marino, M.
    ENUMERATIVE INVARIANTS IN ALGEBRAIC GEOMETRY AND STRING THEORY, 2008, 1947 : 49 - 104
  • [22] Refined Topological Branes
    Can Kozçaz
    Shamil Shakirov
    Cumrun Vafa
    Wenbin Yan
    Communications in Mathematical Physics, 2021, 385 : 937 - 961
  • [23] Refined Topological Branes
    Kozcaz, Can
    Shakirov, Shamil
    Vafa, Cumrun
    Yan, Wenbin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (02) : 937 - 961
  • [24] REFINED VERTEX SPARSIFIERS OF PLANAR GRAPHS
    Krauthgamer, Robert
    Rika, Havana
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 101 - 129
  • [25] REFINED VERTEX CODES AND VERTEX PARTITIONING METHODOLOGY FOR GRAPH ISOMORPHISM TESTING
    BHAT, KVS
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1980, 10 (10): : 610 - 615
  • [26] Orientifolds and the refined topological string
    Aganagic, Mina
    Schaeffer, Kevin
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [27] Torus Knots and the Topological Vertex
    Hans Jockers
    Albrecht Klemm
    Masoud Soroush
    Letters in Mathematical Physics, 2014, 104 : 953 - 989
  • [28] Trace identities for the topological vertex
    Jim Bryan
    Martijn Kool
    Benjamin Young
    Selecta Mathematica, 2018, 24 : 1527 - 1548
  • [29] Refining the shifted topological vertex
    Drissi, L. B.
    Jehjouh, H.
    Saidi, E. H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [30] Flop invariance of the topological vertex
    Minabe, Satoshi
    NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 269 - 279